Abstract P104: Simultaneous Treatment With Ivabradine And Spironolactone Does Not Modify Hypertension-induced Myocardial Fibrosis In Dahl Salt-sensitive Rats

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Eduard I Dedkov ◽  
Andrew T Milcarek

Background: Hypertension (HT)-induced accumulation of myocardial collagen stiffens the left ventricular (LV) wall and, hence, promotes diastolic dysfunction. Considering that a competitive aldosterone receptor antagonist spironolactone (SL) as well as a “pure” heart rate-lowering drug ivabradine (IVA) have both been proven to exert an anti-fibrotic effect during cardiac remodeling, we hypothesized that, in combination, these drugs would complement each other in alleviating HT-induced myocardial fibrosis and, therefore, could better preserve diastolic function. Methods: Sustained HT was induced in 7-week-old male Dahl salt-sensitive rats by feeding them a high-salt (8%) diet for 7 weeks. Then, HT rats were randomly assigned in two experimental groups: 1) IVA (10 mg/kg/day) + SL (20 mg/kg/day)-treated (HT-T) and 2) vehicle only (HT-V). The drugs and the vehicle (a mixture of 50% dimethyl sulfoxide/50% propylene glycol, v/v) were delivered IP by osmotic pumps for 8 weeks. The age-matched rats were used as normotensive controls (NT). Heart rate (HR) and blood pressure (BP) were recorded every other week using a CODA tail-cuff plethysmography system. At the end of the study, the hemodynamic parameters were assessed using a Millar pressure catheter and the hearts were collected for histology and quantitative morphometry. Statistical analysis was performed using Prism 6. Results: We found that during 8-week treatment period, BP had remained comparably elevated in both HT groups by ~26% (P≤0.01) on average vs. NT rats, whereas HR had been persistently reduced in HT-T group by ~38% and ~27% (P≤0.01) on average vs. HT-V and NT rats, respectively. At the end of the study period, all groups revealed a similar level of LV end-diastolic pressure, suggesting the analogous diastolic stiffness of the myocardium. At the same time, morphological examination of the hearts has confirmed that sustained HT caused significant interstitial and perivascular fibrosis (P≤0.01) in both experimental groups compared to NT rats, and that the treatment did not change the extent of fibrillar collagen accumulation as compared to HT-V rats. Conclusions: Taken together, our findings confirmed that a combined treatment with IVA and SL could not alleviate HT-induced myocardial fibrosis.

1976 ◽  
Vol 230 (4) ◽  
pp. 893-900 ◽  
Author(s):  
ER Powers ◽  
Foster ◽  
Powell WJ

The modification by aortic pressure and stroke volume of the response in cardiac performance to increases in heart rate (interval-force relationship) has not been previously studied. To investigate this interaction, 30 adrenergically blocked anesthetized dogs on right heart bypass were studied. At constant low aortic pressure and stroke volume, increasing heart rate (over the entire range 60-180) is associated with a continuously increasing stroke power, decreasing systolic ejection period, and an unchanging left ventricular end-diastolic pressure and circumference. At increased aortic pressure or stroke volume at low rates (60-120), increases in heart rate were associated with an increased performance. However, at increased aortic pressure or stroke volume at high rates (120-180), increases in heart rate were associated with a leveling or decrease in performance. Thus, an increase in aortic pressure or stroke volume results in an accentuation of the improvement in cardiac performance observed with increases in heart rate, but this response is limited to a low heart rate range. Therefore, the hemodynamic response to given increases in heart rate is critically dependent on aortic pressure and stroke volume.


1975 ◽  
Vol 229 (5) ◽  
pp. 1261-1270 ◽  
Author(s):  
W Enrlich ◽  
FV Schrijen ◽  
TA Solomon ◽  
E Rodriguez-Lopez ◽  
RL Riley

The transient circulatory changes following paced heart rate increase are reported from 133 trials with 6 unanesthetized dogs with chronically implanted monitoring devices for heart rate, cardiac output, aortic blood pressure, and mean right atrial pressure. In 62 trials with 2 of the dogs, pulmonary artery, and left ventricular end-diastolic pressure, as well as left ventricular dP/dt were also studied. The sequence of changes in pressures and flows is analyzed in terms of probable underlying mechanisms, particularly with respect to the nature of vascular resistances. The rise in aortic pressure and flow during the first 3 s of paced heart rate increase, before arterial stretch receptor reflexes become active, is more consistent with an effective downstream pressure of about 49 mmHg, presumably at the arteriolar level, than with an effective downstream pressure close to 0 mmHg at the right atrial level. In the pulmonary circulation where vascular reflex effects are less prominent, the pattern of pulmonary arterial pressure and flow for the entire 30 s of observation is consistent with an effective downstream pressure of 9 mmHg, presumably at the alveolar or pulmonary arteriolar level, rather than at the level of the left ventricular end-diastolic pressure.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Quan-wei Wang ◽  
Xiao-feng Yu ◽  
Hua-li Xu ◽  
Xue-zhong Zhao ◽  
Da-yuan Sui

Objective. Panax ginseng is used widely for treatment of cardiovascular disorders in China. Ginsenoside Re is the main chemical component of P. ginseng. We aimed to investigate the protective effect of ginsenoside Re on isoproterenol-induced myocardial fibrosis and heart failure in rats. Methods. A model of myocardial fibrosis and heart failure was established by once-daily subcutaneous injection of isoproterenol (5 mg/kg/day) to rats for 7 days. Simultaneously, rats were orally administrated ginsenoside Re (5 or 20 mg/kg) or vehicle daily for 4 weeks. Results. Isoproterenol enhanced the heart weight, myocardial fibrosis, and hydroxyproline content in rat hearts. Ginsenoside Re inhibited (at least in part) the isoproterenol-induced increase in heart weight, myocardial fibrosis, and hydroxyproline content. Compared with the isoproterenol group, treatment with ginsenoside Re ameliorated changes in left ventricular systolic pressure, left ventricular end diastolic pressure, and the positive and negative maximal values of the first derivative of left ventricular pressure. Ginsenoside Re administration also resulted in decreased expression of transforming growth factor (TGF)-β1 in serum and decreased expression of Smad3 and collagen I in heart tissue. Conclusion. Ginsenoside Re can improve isoproterenol-induced myocardial fibrosis and heart failure by regulation of the TGF-β1/Smad3 pathway.


1983 ◽  
Vol 244 (6) ◽  
pp. H799-H806 ◽  
Author(s):  
K. A. Fox ◽  
H. Nomura ◽  
B. E. Sobel ◽  
S. R. Bergmann

Assessments of myocardial metabolism based on external detection of accumulation of radiolabeled substrates may be influenced, as a result of alterations in flow, by altered substrate delivery as well as altered work (with concomitant changes in metabolic requirements). To determine whether reduced delivery limits substrate utilization under defined conditions of reduced perfusion, an isolated rabbit heart preparation was employed in which flow was reduced but myocardial oxygen consumption (MVo2) and work were kept constant by adjustment of left ventricular end-diastolic pressure and heart rate. Flow was reduced from 1.5 to 0.5 ml . g-1 . min-1, while work was maintained constant in hearts functioning at either low or high levels of MVo2. Consumption of palmitate remained constant (48.8 +/- 11.6 and 68.8 +/- 23.3 nmol . g-1 . min-1), because the proportion of palmitate extracted increased (8.8 +/- 4 to 29.1 +/- 7.2% and 10.3 +/- 3.4 to 21.0 +/- 6.1%). The results indicate that, despite reduction of flow, hearts at constant work loads can extract increasing proportions of delivered substrates such that net utilization remains constant until flow is reduced below the level required to maintain cellular function. They suggest that, under conditions of low flow, impaired extraction of substrates reflects either primarily or secondarily depressed myocardial metabolism rather than simply decreased delivery of substrate.


1999 ◽  
Vol 276 (3) ◽  
pp. H873-H880 ◽  
Author(s):  
Hoang M. Thai ◽  
Hohai T. Van ◽  
Mohamed A. Gaballa ◽  
Steven Goldman ◽  
Thomas E. Raya

Angiotensin II type 1 (AT1) receptor blockade attenuates myocardial fibrosis after myocardial infarction (MI). However, whether inhibition of fibrosis by AT1 receptor blockade influences myocardial stiffness and contractility is unknown. We measured left ventricular (LV) hemodynamics, papillary muscle function, and myocardial stiffness and fibrosis in rats randomized to losartan or placebo 1 day after MI and treated subsequently for 8 wk. Losartan decreased LV and right ventricular weights as well as mean aortic and LV systolic pressures in sham and MI rats. LV end-diastolic pressure increased after MI and was decreased with losartan. Maximal developed tension and peak rate of tension rise and decline were decreased in MI vs. sham rats. Interstitial fibrosis developed after MI and was prevented in losartan-treated MI rats. The development of abnormal myocardial stiffness after MI was prevented by losartan. After MI, AT1 receptor blockade prevents an abnormal increase in myocardial collagen content. This effect was associated with a normalization of passive myocardial stiffness.


1997 ◽  
Vol 87 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Iyad N. Jamali ◽  
Paul S. Pagel ◽  
Douglas A. Hettrick ◽  
Dermot Lowe ◽  
Judy R. Kersten ◽  
...  

Background The effects of triiodothyronine (T3) on systemic hemodynamics, myocardial contractility (preload recruitable stroke work slope; Mw), and left ventricular (LV) isovolumic relaxation (time constant; tau) were examined before and after the development of pacing-induced cardiomyopathy in conscious dogs. Methods Dogs (n = 8) were chronically instrumented for measurement of aortic and LV pressure, dP/dtmax, subendocardial segment length, and cardiac output. Dogs received escalating doses (0.2, 2.0, and 20.0 mg/kg, intravenous) of T3 over 5 min at 1-h intervals, and peak hemodynamic effects were recorded 10 min after each dose and 24 h after the final dose. Dogs were then continuously paced at 220-240 beats/min for 21 +/- 2 days. Pacing was temporarily discontinued after the development of severe LV dysfunction, and administration of T3 was repeated. Results T3 produced immediate and sustained (24 h) increases (P < 0.05) in Mw and dP/dtmax in dogs before the initiation of pacing, consistent with a positive inotropic effect. No changes in tau occurred. Rapid ventricular pacing over 3 weeks increased baseline heart rate (sinus rhythm) and LV end-diastolic pressure, decreased mean arterial and LV systolic pressures, and caused LV systolic (decreases in Mw and dP/dtmax) and diastolic (increases in tau) dysfunction. T3 caused immediate and sustained increases in Mw (63 +/- 7 during control to 82 +/- 7 mmHg after the 2 mg/kg dose) and decreases in tau (65 +/- 8 during control to 57 +/- 6 ms after the 20 mg/kg dose), indicating that this hormone enhanced myocardial contractility and shortened LV relaxation, respectively, in the presence of chronic LV dysfunction. In contrast to the findings in dogs with normal LV function, T3 did not affect heart rate and calculated indices of myocardial oxygen consumption and reduced LV end-diastolic pressure (27 +/- 3 during control to 20 +/- 2 mmHg after the 2 mg/kg dose) in cardiomyopathic dogs. Conclusions The findings indicate that T3 produces favorable alterations in hemodynamics and modest positive inotropic and lusitropic effects in conscious dogs with LV dysfunction produced by rapid LV pacing.


2007 ◽  
Vol 293 (1) ◽  
pp. H590-H598 ◽  
Author(s):  
Eduard I. Dedkov ◽  
Wei Zheng ◽  
Lance P. Christensen ◽  
Robert M. Weiss ◽  
Florence Mahlberg-Gaudin ◽  
...  

We tested the hypothesis that chronically reducing the heart rate in infarcted middle-aged rats using ivabradine (IVA) would induce arteriolar growth and attenuate perivascular collagen and, thereby, improve maximal perfusion and coronary reserve in the surviving myocardium. Myocardial infarction (MI) was induced in 12-mo-old male Sprague-Dawley rats, which were then treated with either IVA (10.5 mg·kg−1·day−1; MI + IVA) or placebo (MI) via intraperitoneal osmotic pumps for 4 wk. Four weeks of IVA treatment limited the increase in left ventricular end-diastolic pressure and the decrease in ejection fraction but did not affect the size of the infarct, the magnitude of myocyte hypertrophy, or the degree of arteriolar and capillary growth. However, treatment reduced interstitial and periarteriolar collagen in the surviving myocardium of MI + IVA rats. The reduced periarteriolar collagen content was associated with improvement in maximal myocardial perfusion and coronary reserve. Although the rates of proliferation of periarteriolar fibroblasts were similar in the MI and MI + IVA groups, the expression levels of the AT1 receptor and transforming growth factor (TGF)-β1 in the myocardium, as well as the plasma level of the ANG II peptide, were lower in treated rats 14 days after MI. Therefore, our data reveal that improved maximal myocardial perfusion and coronary reserve in MI + IVA rats are most likely the result of reduced periarteriolar collagen rather than enhanced arteriolar growth.


1987 ◽  
Vol 65 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Leonard B. Bell ◽  
D. Fred Peterson

Factors known to influence left ventricular contractility include preload, afterload, circulating catecholamine concentration, efferent sympathethic discharge, and heart rate. Heart rate influences have been primarily determined in the dog, whereas the influence of heart rate in smaller mammals has not been determined. Eight pentobarbital-anesthetized rabbits were instrumented to measure electrocardiogram, heart rate, left ventricular pressure, end-diastolic pressure, dP/dt, and mean and pulsatile aortic pressures. Systematic bradycardia was induced by stimulating the peripheral end of the sectioned right vagus nerve. Between 293 and 235 beats/min, there was no change in (dP/dt)max as heart rate was decreased. Below this range there was a direct relationship between (dP/dt)max and heart rate. Preload remained unchanged down to 132 beats/min. There was a small but significant decrease in afterload (0.09 mmHg∙beat−1∙min−1; 1 mmHg = 133.32 Pa) throughout the decrease in heart rate. Infusion of propranolol (2.0 mg/kg) produced no marked change in the heart rate – (dP/dt)max relationship, although both resting heart rate and (dP/dt)max were reduced. This study demonstrates that (dP/dt)max is not influenced by changes in heart rate above 235 beats/min in the pentobarbital-anesthetized rabbit. These results differ from findings in other animals, and demonstrate that species and heart rate ranges must be considered when drawing conclusions regarding (dP/dt)max as a reliable index of contractility.


2008 ◽  
Vol 294 (2) ◽  
pp. H810-H820 ◽  
Author(s):  
Carly LaCroix ◽  
Jessica Freeling ◽  
Alese Giles ◽  
Jürgen Wess ◽  
Yi-Fan Li

Suppressed parasympathetic nervous system (PSNS) function has been found in a variety of cardiovascular diseases, such as hypertension, heart failure, and diabetes. However, whether impaired PSNS function plays a significant role in ventricular dysfunction remains to be investigated. Cardiac regulation by the PSNS is primarily mediated by the M2muscarinic acetylcholine receptor (M2-AChR). In this study, we tested the hypothesis that lack of M2-AChR-mediated PSNS function may adversely impact cardiac ventricular function. Using M2-AChR knockout (KO) and wild-type (WT) mice, we found that the basal levels of heart rate and left ventricular function were similar in M2-AChR KO and WT mice. A bolus injection of isoproterenol (Iso) induced a greater increase in heart rate in M2-AChR KO mice than in WT mice. However, the responses of change in pressure over time (dP/d t) to Iso were similar in the two groups. After chronic infusion with Iso for 1 wk, the baseline values of left ventricular function were increased to similar extents in M2-AChR KO and WT mice. However, the M2-AChR KO mice exhibited impaired ventricular function, indicated as attenuated dP/d t and increased end-diastolic pressure, during an increase in cardiac afterload induced by a bolus injection of phenylephrine. Furthermore, chronic Iso infusion significantly increased matrix metalloproteinase (MMP) activity in the heart in M2-AChR KO mice. In primary culture of mixed neonatal rat cardiac fibroblast and cardiomyocytes, cotreatment with muscarinic agonist bethanechol reversed phenylephrine-induced increase in MMP-9 activation. These data suggest that M2-AChR may mediate an inhibitory regulation on MMP function. The overall results from this study suggest that M2-AChR-mediated PSNS function may provide cardiac protection. Lack of this protective mechanism will increase the susceptibility of the heart to cardiac stresses.


1963 ◽  
Vol 205 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Andrew G. Wallace ◽  
N. Sheldon Skinner ◽  
Jere H. Mitchell

The maximal rate of left ventricular pressure development (max. dp/dt) was measured in an areflexic preparation which permitted independent control of stroke volume, heart rate, and aortic pressure. Max. dp/dt increased as a result of elevating ventricular end-diastolic pressure. Elevating mean aortic pressure and increasing heart rate each resulted in a higher max. dp/dt without a change in ventricular end-diastolic pressure. Aortic diastolic pressure was shown to influence max. dp/dt in the absence of changes in ventricular end-diastolic pressure or contractility. Increasing contractility increased max. dp/dt while changing the manner of ventricular activation decreased max. dp/dt. These findings demonstrate that changes in max. dp/dt can and frequently do reflect changes in myocardial contractility. These data also indicate that max. dp/dt is a complex function, subject not only to extrinsically induced changes in contractility, but also to ventricular end-diastolic pressure, aortic diastolic pressure, the manner of ventricular activation, and intrinsic adjustments of contractility.


Sign in / Sign up

Export Citation Format

Share Document