scholarly journals In Utero Particulate Matter Exposure Produces Heart Failure, Electrical Remodeling, and Epigenetic Changes at Adulthood

Author(s):  
Vineeta Tanwar ◽  
Matthew W. Gorr ◽  
Markus Velten ◽  
Clayton M. Eichenseer ◽  
Victor P. Long ◽  
...  
Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Victor P Long ◽  
Vineeta Tanwar ◽  
Matthew W Gorr ◽  
Stephen H Baine ◽  
Ingrid M Bonilla ◽  
...  

Introduction: In utero exposure to particulate matter through perinatal development has been demonstrated to produce cardiac dysfunction during adulthood. It is unknown what effect exposure to air pollution during the in utero period alone has on cardiac dysfunction and electrical remodeling in adulthood. We tested the hypothesis that adult mice exposed to concentrated particulate matter in utero would demonstrate global cardiac dysfunction as well as cellular electrical remodeling at adulthood. Methods: Female FVB mice were exposed either to filtered air (FA) or particulate matter with diameter less than 2.5 μm (PM2.5) at a concentration of ~ 51.69 μg/m3 for 6 h/day, 7 days/wk (consistent with exposure in a large metropolitan city) beginning at plug formation throughout pregnancy. Cardiac function was assessed via ECHO in male offspring at 12 wks of age, followed by sacrifice and isolation of ventricular cardiomyocytes from both groups of mice for electrophysiological recordings. Results: ECHO identified increased LVESd (2.25 ± 0.20 FA, 2.61 ± 0.35 PM2.5, P=0.0001) and LVEDd (3.89 ± 0.03 FA, 3.99 ± 0.038 PM2.5, P=0.04) dimensions and reduced PWTs (1.40 ± 0.05 FA, 1.26 ± 0.04 PM2.5, P=0.04) in mice exposed in utero to PM2.5. Morphological alterations were associated with lower systolic function as indicated by reduced fractional shortening% (43.6 ± 2.1 FA, 33.2 ± 1.6 PM2.5, P=0.0009) in PM2.5 exposed mice compared to FA controls. Electrophysiological recordings revealed significant prolongation of the action potential at 90% repolarization (APD90) in PM2.5 exposed mice compared to FA. (FIGURE) Conclusions: In utero exposure to relevant levels of particulate matter results in dilated cardiomyopathy and electrical remodeling. Future studies are warranted to determine the causes of, and the exposure thresholds resulting in this adverse cardiac remodeling.


Author(s):  
Cavin K. Ward‐Caviness ◽  
Anne M. Weaver ◽  
Matthew Buranosky ◽  
Emily R. Pfaff ◽  
Lucas M. Neas ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
K.M. Bakulski ◽  
J.F. Dou ◽  
J. Fisher ◽  
A.M. Gard ◽  
E.B. Ware ◽  
...  

2018 ◽  
Vol 24 (3) ◽  
pp. 341-358 ◽  
Author(s):  
Xiaotong Ji ◽  
Yingying Zhang ◽  
Guangke Li ◽  
Nan Sang

Recently, numerous studies have found that particulate matter (PM) exposure is correlated with increased hospitalization and mortality from heart failure (HF). In addition to problems with circulation, HF patients often display high expression of cytokines in the failing heart. Thus, as a recurring heart problem, HF is thought to be a disorder characterized in part by the inflammatory response. In this review, we intend to discuss the relationship between PM exposure and HF that is based on inflammatory mechanism and to provide a comprehensive, updated evaluation of the related studies. Epidemiological studies on PM-induced heart diseases are focused on high concentrations of PM, high pollutant load exposure in winter, or susceptible groups with heart diseases, etc. Furthermore, it appears that the relationship between fine or ultrafine PM and HF is stronger than that between HF and coarse PM. However, fewer studies paid attention to PM components. As for experimental studies, it is worth noting that coarse PM may indirectly promote the inflammatory response in the heart through systematic circulation of cytokines produced primarily in the lungs, while ultrafine PM and its components can enter circulation and further induce inflammation directly in the heart. In terms of PM exposure and enhanced inflammation during the pathogenesis of HF, this article reviews the following mechanisms: hemodynamics, oxidative stress, Toll-like receptors (TLRs) and epigenetic regulation. However, many problems are still unsolved, and future work will be needed to clarify the complex biologic mechanisms and to identify the specific components of PM responsible for adverse effects on heart health.


2017 ◽  
Vol 39 (02) ◽  
pp. 133-140 ◽  
Author(s):  
Adriano Silva-Renno ◽  
Guilherme Baldivia ◽  
Manoel Oliveira-Junior ◽  
Maysa Brandao-Rangel ◽  
Elias El-Mafarjeh ◽  
...  

AbstractAir pollution is a growing problem worldwide, inducing and exacerbating several diseases. Among the several components of air pollutants, particulate matter (PM), especially thick (10–2.5 µm; PM 10) and thin (≤2.5 µm; PM 2.5), are breathable particles that easily can be deposited within the lungs, resulting in pulmonary and systemic inflammation. Although physical activity is strongly recommended, its effects when practiced in polluted environments are questionable. Therefore, the present study evaluated the pulmonary and systemic response of concomitant treadmill training with PM 2.5 and PM 10 exposure. Treadmill training inhibited PM 2.5- and PM 10-induced accumulation of total leukocytes (p<0.001), neutrophils (p<0.001), macrophages (p<0.001) and lymphocytes (p<0.001) in bronchoalveolar lavage (BAL), as well as the BAL levels of IL-1beta (p<0.001), CXCL1/KC (p<0.001) and TNF-alpha (p<0.001), whereas it increased IL-10 levels (p<0.05). Similar effects were observed on accumulation of polymorphonuclear (p<0.01) and mononuclear (p<0.01) cells in the lung parenchyma and in the peribronchial space. Treadmill training also inhibited PM 2.5- and PM 10-induced systemic inflammation, as observed in the number of total leukocytes (p<0.001) and in the plasma levels of IL-1beta (p<0.001), CXCL1/KC (p<0.001) and TNF-alpha (p<0.001), whereas it increased IL-10 levels (p<0.001). Treadmill training inhibits lung and systemic inflammation induced by particulate matter.


Author(s):  
Tamar Wainstock ◽  
Israel Yoles ◽  
Ruslan Sergienko ◽  
Itai Kloog ◽  
Eyal Sheiner

Sign in / Sign up

Export Citation Format

Share Document