Abstract 323: Loss of Gravity Impairs Cardiac Neural Crest Cell Lineage Development and Function

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Konstantinos E Hatzistergos ◽  
Krystalenia Valasaki ◽  
Zhijie Jiang ◽  
Lauro M Takeuchi ◽  
Wayne Balkan ◽  
...  

Introduction: A multitude of structural, haemodynamic and electromechanical cardiovascular disorders have been observed in humans following space-travel. These abnormalities are thought to emerge from transient alterations in autonomic nervous system (ANS). However, since the ANS is cardiac neural crest (CNC)-derived, whether microgravity-induced cardiomyopathies reflect CNC dysfunction, is unknown. Hypothesis: Impairment of CNCs underlies microgravity-induced cardiomyopathies. Methods: Myocardial explants from adult cKit CreERT2/+ ;IRG mice (n=5/group), as well as cKit CreERT2/+ ;IRG- derived (iPSC Kit-Cre ; n=6/group) and Wnt1-Cre;tdTomato -derived (iPSC Wnt1-Cre ; n=18/group) induced pluripotent stem cells, were cultured under static (SC) or simulated microgravity conditions (rotary cell-culture system; RCCS). Results: CNC lineage-tracing in cardiac explants illustrated that, compared to SC, RCCS abolished the pool of cKit + CNCs in adult hearts, indicated by quantitation of cKit CreERT2 - mediated EGFP expression ( p <0.05). Cardiogenesis modeling experiments with iPSC Kit-Cre yielded fewer beating EBs ( p =0.0005), and ~10-fold reduction in EGFP + cardiomyocytes ( p =0.01), in RCCS vs . SC. Microarray analyses suggested that RCCS-mediated alterations in BMP and Wnt/β-catenin pathways, downregulated ANS and CNC-related gene programs, and enhanced vasculogenic differentiation without affecting the expression of cardiac mesoderm-related genes. Differences were verified by quantitative PCR. Modeling CNC development in iPSC Wnt1-Cre further confirmed an RCCS-mediated dramatic impairment in development and function of CNCs, indicated by quantitation of tdTomato expression in day-10 and day-21 beating embryoid bodies ( p <0.0001). Intriguingly, the effect of RCCS in CNCs could be only partially rescued upon transfer to SC. Conclusions: Together these data indicate that microgravity negatively regulates the development and function of CNCs, thus partly explaining the cellular and molecular mechanisms of microgravity-induced cardiomyopathies. Moreover, these findings are expected to have important implications in space exploration, since they suggest an essential role for gravity in vertebrate development.

2013 ◽  
Vol 113 (5) ◽  
pp. 505-516 ◽  
Author(s):  
Sophie Escot ◽  
Cédrine Blavet ◽  
Sonja Härtle ◽  
Jean-Loup Duband ◽  
Claire Fournier-Thibault

Rationale: Cardiac neural crest cells (NCs) contribute to heart morphogenesis by giving rise to a variety of cell types from mesenchyme of the outflow tract, ventricular septum, and semilunar valves to neurons of the cardiac ganglia and smooth muscles of the great arteries. Failure in cardiac NC development results in outflow and ventricular septation defects commonly observed in congenital heart diseases. Cardiac NCs derive from the vagal neural tube, which also gives rise to enteric NCs that colonize the gut; however, so far, molecular mechanisms segregating these 2 populations and driving cardiac NC migration toward the heart have remained elusive. Objective: Stromal-derived factor-1 (SDF1) is a chemokine that mediates oriented migration of multiple embryonic cells and mice deficient for Sdf1 or its receptors, Cxcr4 and Cxcr7 , exhibit ventricular septum defects, raising the possibility that SDF1 might selectively drive cardiac NC migration toward the heart via a chemotactic mechanism. Methods and Results : We show in the chick embryo that Sdf1 expression is tightly coordinated with the progression of cardiac NCs expressing Cxcr4 . Cxcr4 loss-of-function causes delayed migration and enhanced death of cardiac NCs, whereas Sdf1 misexpression results in their diversion from their normal pathway, indicating that SDF1 acts as a chemoattractant for cardiac NCs. These alterations of SDF1 signaling result in severe cardiovascular defects. Conclusions: These data identify Sdf1 and its receptor Cxcr4 as candidate genes responsible for cardiac congenital pathologies in human.


2002 ◽  
Vol 117 (1-2) ◽  
pp. 115-122 ◽  
Author(s):  
Xiaobing Jiang ◽  
Bibha Choudhary ◽  
Esther Merki ◽  
Kenneth R Chien ◽  
Robert E Maxson ◽  
...  

Development ◽  
2020 ◽  
Vol 147 (20) ◽  
pp. dev193193 ◽  
Author(s):  
Weiyi Tang ◽  
Marianne E. Bronner

ABSTRACTSince its discovery 150 years ago, the neural crest has intrigued investigators owing to its remarkable developmental potential and extensive migratory ability. Cell lineage analysis has been an essential tool for exploring neural crest cell fate and migration routes. By marking progenitor cells, one can observe their subsequent locations and the cell types into which they differentiate. Here, we review major discoveries in neural crest lineage tracing from a historical perspective. We discuss how advancing technologies have refined lineage-tracing studies, and how clonal analysis can be applied to questions regarding multipotency. We also highlight how effective progenitor cell tracing, when combined with recently developed molecular and imaging tools, such as single-cell transcriptomics, single-molecule fluorescence in situ hybridization and high-resolution imaging, can extend the scope of neural crest lineage studies beyond development to regeneration and cancer initiation.


2017 ◽  
Vol 114 (50) ◽  
pp. 13200-13205 ◽  
Author(s):  
J. Andrew Gillis ◽  
Els C. Alsema ◽  
Katharine E. Criswell

Cartilaginous fishes (e.g., sharks and skates) possess a postcranial dermal skeleton consisting of tooth-like “denticles” embedded within their skin. As with teeth, the principal skeletal tissue of dermal denticles is dentine. In the head, cranial neural crest cells give rise to the dentine-producing cells (odontoblasts) of teeth. However, trunk neural crest cells are generally regarded as nonskeletogenic, and so the embryonic origin of trunk denticle odontoblasts remains unresolved. Here, we use expression of FoxD3 to pinpoint the specification and emigration of trunk neural crest cells in embryos of a cartilaginous fish, the little skate (Leucoraja erinacea). Using cell lineage tracing, we further demonstrate that trunk neural crest cells do, in fact, give rise to odontoblasts of trunk dermal denticles. These findings expand the repertoire of vertebrate trunk neural crest cell fates during normal development, highlight the likely primitive skeletogenic potential of this cell population, and point to a neural crest origin of dentine throughout the ancestral vertebrate dermal skeleton.


2018 ◽  
Vol 247 (12) ◽  
pp. 1286-1296 ◽  
Author(s):  
Kimberly E. Inman ◽  
Carlo Donato Caiaffa ◽  
Kristin R. Melton ◽  
Lisa L. Sandell ◽  
Annita Achilleos ◽  
...  

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Konstantinos E Hatzistergos ◽  
Lauro M Takeuchi ◽  
Wayne Balkan ◽  
Joshua M Hare

Introduction: Space flight has profound negative impacts on cardiac health. Whereas microgravity appears to benefit cardiomyogenesis, long-duration space flight results in increased risk for cardiomyopathy. Here, we focused on cKit+ cardiac progenitor cells (CPCs) to elucidate the effects of microgravity in the heart. Hypothesis: Microgravity inhibits migration, proliferation and differentiation of CPCs. Methods: Adult heart tissue or induced pluripotent stem cells (iPSCs) from cKitCreErt2;IRG mice were grown for up to 24- (n=5) or 21-days (n=6), respectively, in static (SC) or a rotary cell-culture system (RCCS, simulated microgravity) in the presence of 4-OH tamoxifen to irreversibly label CPCs with EGFP. Expression of EGFP was quantified at selected time points in heart explants and iPSC-derived beating embryoid bodies (EBs). In addition, microarray analysis was performed on EBs at selected time points (n=11). Results: We found that, although explants in SC consistently produced EGFP+ CPCs with full capacity to proliferate and migrate, expression of EGFP was abolished in RCCS (p<0.05). Similarly, when day-4 EBs (formed via the hanging-drop method) were transferred to RCCS, they generated significantly fewer spontaneously beating EBs compared to EBs grown in SC (p=0.0005), whereas expression of EGFP in beating EBs was downregulated ~10-fold (p=0.01). Microarray analysis of EBs illustrated that the effect of CPs was accompanied by downregulation of genes related to migration, differentiation and development of the cardiac neural crest cell (CNC) lineage (i.e. Pax3, semaphorins, endothelin) without affecting the expression of cardiac mesoderm-related genes (i.e. GATA4, NKX2-5, MEF2C). Intriguingly, the effect of RCCS in CNC-related genes could be partly rescued upon transfer of EBs from RCCS to SC. Conclusions: cKit expression and CNC pathways are inhibited under simulated microgravity but can be reversed by returning to normal gravity. Our findings provide novel insights into the role of gravity in cardiomyogenesis and suggest that CPCs should be targeted therapeutically for the prevention and treatment of microgravity-induced cardiomyopathy.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Konstantinos E Hatzistergos ◽  
Lauro M Takeuchi ◽  
Dieter Saur ◽  
Barbara Seidler ◽  
Susan M Dymecki ◽  
...  

Introduction: The signaling pathways that govern cKit+ cardiac progenitor cell (CPC) differentiation into cardiomyocytes (CMs) are unknown. Some studies suggest an essential role in cardiomyogenesis, others suggest a minimal CPC contribution. We studied if it is a non-permissive cardiac milieu that minimizes the generation of CMs from CPCs. Hypothesis: Transient BMP antagonism directs the generation of cardiomyocytes from CPCs. Methods: We lineage-traced CPCs using a novel dual-recombinase responsive indicator mice (cKitCreERT2;Wnt1::Flpe;RC::Fela) and iPSCs derived from cKitCreERT2;IRG (iPSCKit) mice. Results: Intersectional genetic fate-mapping of cKitCreERT2;Wnt1:: Flpe;RC::Fela embryos supported that cKit marks Wnt1-expressing cardiac neural crest (CNC) progenitors, emerging at ~E9.5 and contributing a limited number of cardiomyocytes (n=3). We lineage-traced CPCs during stage-specific cardiogenic differentiation of iPSCKit. Ascorbate treatment promoted differentiation of iPSCKit-derived embryoid bodies (EBs) into Nkx2.5+ myocardium, 45.5%±6.7% of which co-expressed the Cre-reporter EGFP (n=154 EBs; 12 preps), suggesting that CPCs encompass fully competent cardiomyogenic progenitors. Noggin (or Dorsomorphin), a BMP antagonist transiently expressed in the heart at E7.5-E8.5 but not during CNC invasion, directed the differentiation of iPSCkit-EBs into Mesp1+/Isl1+/Nkx2.5+ cardiac mesoderm progenitors (p≤0.0001). The same signaling pathway subsequently directed EBs into the cKit+/Wnt1+/Pax3+/Mitf-H+/Isl1+/Nkx2.5+ CNC lineage (p≤0.0001), while suppressing the generation of WT1+/Tbx18+ epicardium (p<0.05). Stage-specific induction of Cre-recombination delineated that iPSCkit-derived CPCs encompass Mesp1–/cKit+/Nkx2.5+ CNC progenitors, which contributed EGFP+ CNC derivatives, including Nkx2-5+ cardiomyocytes, to 60.7%±7.3% of spontaneously beating EBs (n=147 EBs; 12 preps). Conclusions: Our data show that CPCkit are fully competent CNC-derived cardiomyogenic progenitors, whose differentiation to cardiomyocytes is minimized by a latent Noggin-mediated signaling pathway. Therapeutically exploiting CPCkit, provides an important strategy for maximizing myocardial regeneration.


Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1671-1679 ◽  
Author(s):  
Y. Chai ◽  
X. Jiang ◽  
Y. Ito ◽  
P. Bringas ◽  
J. Han ◽  
...  

Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.


Author(s):  
Lulu Ji ◽  
Lin Wang

Human placenta is vital for fetal development, and act as an interface between the fetus and the expecting mother. Abnormal placentati on underpins various pregnancy complications such as miscarriage, pre-eclampsia and intrauterine growth restriction. Despite the important role of placenta, the molecular mechanisms governing placental formation and trophoblast cell lineage specification is poorly understand. It is mostly due to the lack of appropriate model system. The great various in placental types across mammals make it limit for the use of laboratory animals in studying human placental development. However, over the past few years, alternative methods have been employed, including human embryonic stem cells, induced pluripotent stem cells, human trophoblast stem cell, and 3-dimensional organoids. Herein, we summarize the present knowledge about human development, differentiated cell types in the trophoblast epithelium and current human placental trophoblast model systems.


Sign in / Sign up

Export Citation Format

Share Document