Abstract 6: Resting-state Functional Connectivity Changes After Stroke Rehabilitation Using Closed Loop Neurofeedback

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Veena A Nair ◽  
Brittany M Young ◽  
Zack Nigogosyan ◽  
Alex Remsick ◽  
Sonya Weber ◽  
...  

Introduction: Brain-computer interface (BCI)-EEG is a promising intervention for improving motor function after stroke. However, brain changes following intervention on a BCI-EEG system are not yet fully understood. We examined changes in resting state functional connectivity (RSFC) MRI in the motor network defined by 6 key regions in the left and right primary motor cortex (M1), left and right supplementary motor area (SMA), and left and right premotor cortex (PMC). Additionally, we investigated brain-behavior correlation between rsFC and a battery of outcome measures including the Barthel Index (BI), the Stroke Impact Scale(SIS), and the Action Research Arm Test (ARAT). Methods: Fifteen stroke patients with persistent mild to severe upper extremity impairment following ischemic stroke received intervention using BCI-EEG and were tested before (T1) and at 2-3 weeks (T2) mid intervention. 11 of these patients were also tested a third time at 4-6 weeks at the end of intervention (T3). Eyes closed, 10 minute resting fMRI and anatomical scans were acquired on a GE 3T MRI scanner. Right hemisphere stroke patients’ scans were flipped so that as a group the lesion was in the left (L) hemisphere and the impaired limb right (R). Seed region based connectivity analyses were performed to examine changes in RSFC over time and in inter-hemispheric and intra-hemispheric connectivity, and correlations between brain changes and behavioral changes were investigated. Results: BCI-EEG intervention led to significant increase in intra-hemispheric connectivity (p = .03) from T1 to T3. Inter-hemispheric connectivity increased from T1 to T3, trending towards significance (p = .06). Significant positive correlations were observed between changes in RSFC (L.M1 and L.PMC, L.M1 and R.PMC, L.SMA and R.PMC, and R.PMC and R.SMA) and change in upper extremity BI score (p ranging from .01 to .001); changes in RSFC between L.PMC and R.PMC correlated with hand strength on the SIS (p = .03). A trend was observed between increase in RSFC (L.M1 and R.PMC) and increase in total ARAT score but this was not significant. Conclusions: Results suggest that BCI-EEG intervention facilitate changes in RSFC in the motor network in stroke patients and these changes are associated with improved outcomes.

2021 ◽  
Author(s):  
ATP Jäger ◽  
JM Huntenburg ◽  
SA Tremblay ◽  
U Schneider ◽  
S Grahl ◽  
...  

AbstractIn motor learning, sequence-specificity, i.e. the learning of specific sequential associations, has predominantly been studied using task-based fMRI paradigms. However, offline changes in resting state functional connectivity after sequence-specific motor learning are less well understood. Previous research has established that plastic changes following motor learning can be divided into stages including fast learning, slow learning and retention. A description of how resting state functional connectivity after sequence-specific motor sequence learning (MSL) develops across these stages is missing. This study aimed to identify plastic alterations in whole-brain functional connectivity after learning a complex motor sequence by contrasting an active group who learned a complex sequence with a control group who performed a control task matched for motor execution. Resting state fMRI and behavioural performance were collected in both groups over the course of 5 consecutive training days and at follow-up after 12 days to encompass fast learning, slow learning, overall learning and retention. Between-group interaction analyses showed sequence-specific increases in functional connectivity during fast learning in the sensorimotor territory of the internal segment of right globus pallidus (GPi), and sequence-specific decreases in right supplementary motor area (SMA) in overall learning. We found that connectivity changes in key regions of the motor network including the superior parietal cortex (SPC) and primary motor cortex (M1) were not a result of sequence-specific learning but were instead linked to motor execution. Our study confirms the sequence-specific role of SMA and GPi that has previously been identified in online task-based learning studies in humans and primates, and extends it to resting state network changes after sequence-specific MSL. Finally, our results shed light on a timing-specific plasticity mechanism between GPi and SMA following MSL.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Charlotte J Stagg ◽  
Velicia Bachtiar ◽  
Ugwechi Amadi ◽  
Christel A Gudberg ◽  
Andrei S Ilie ◽  
...  

Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these ‘resting state networks’ is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies.


2016 ◽  
Vol 235 (3) ◽  
pp. 941-948 ◽  
Author(s):  
Haiqing Yang ◽  
Lin Bai ◽  
Yi Zhou ◽  
Shan Kang ◽  
Panpan Liang ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Robert L Barry ◽  
Seth A Smith ◽  
Adrienne N Dula ◽  
John C Gore

Functional magnetic resonance imaging using blood oxygenation level dependent (BOLD) contrast is well established as one of the most powerful methods for mapping human brain function. Numerous studies have measured how low-frequency BOLD signal fluctuations from the brain are correlated between voxels in a resting state, and have exploited these signals to infer functional connectivity within specific neural circuits. However, to date there have been no previous substantiated reports of resting state correlations in the spinal cord. In a cohort of healthy volunteers, we observed robust functional connectivity between left and right ventral (motor) horns, and between left and right dorsal (sensory) horns. Our results demonstrate that low-frequency BOLD fluctuations are inherent in the spinal cord as well as the brain, and by analogy to cortical circuits, we hypothesize that these correlations may offer insight into the execution and maintenance of sensory and motor functions both locally and within the cerebrum.


2017 ◽  
Vol 24 (13) ◽  
pp. 1696-1705 ◽  
Author(s):  
Alvino Bisecco ◽  
Federica Di Nardo ◽  
Renato Docimo ◽  
Giuseppina Caiazzo ◽  
Alessandro d’Ambrosio ◽  
...  

Objectives: To investigate resting-state functional connectivity (RS-FC) of the default-mode network (DMN) and of sensorimotor network (SMN) network in relapsing remitting (RR) multiple sclerosis (MS) patients with fatigue (F) and without fatigue(NF). Methods: In all, 59 RRMS patients and 29 healthy controls (HC) underwent magnetic resonance imaging (MRI) protocol including resting-state fMRI (RS-fMRI). Functional connectivity of the DMN and SMN was evaluated by independent component analysis (ICA). A linear regression analysis was performed to explore whether fatigue was mainly driven by changes observed in the DMN or in the SMN. Regional gray matter atrophy was assessed by voxel-based morphometry (VBM). Results: Compared to HC, F-MS patients showed a stronger RS-FC in the posterior cingulate cortex (PCC) and a reduced RS-FC in the anterior cingulated cortex (ACC) of the DMN. F-MS patients, compared to NF-MS patients, revealed (1) an increased RS-FC in the PCC and a reduced RS-FC in the ACC of the DMN and (2) an increased RS-FC in the primary motor cortex and in the supplementary motor cortex of the SMN. The regression analysis suggested that fatigue is mainly driven by RS-FC changes of the DMN. Conclusions: Fatigue in RRMS is mainly associated to a functional rearrangement of non-motor RS networks.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Velicia Bachtiar ◽  
Jamie Near ◽  
Heidi Johansen-Berg ◽  
Charlotte J Stagg

We previously demonstrated that network level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (<xref ref-type="bibr" rid="bib24">Stagg et al., 2014</xref>). In this study, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 min of 1 mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex; these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.


2021 ◽  
Vol 14 ◽  
Author(s):  
Tao Zhang ◽  
Qian Jiang ◽  
Furu Xu ◽  
Ruixue Zhang ◽  
Dezheng Liu ◽  
...  

Excessive glucocorticoids (GC) may lead to the aggravation of several basic diseases including myopia, due to plasma hormone imbalances associated with the hypothalamic–pituitary–adrenal axis (HPAA). Electroacupuncture (EA) is an effective therapeutic method to treat many diseases, although it remains unclear whether EA at acupoints on the foot or back would be effective in treating eye diseases. It was recently found that visual cortex activity for responses to visual stimuli with spatial frequency and resting-state functional connectivity (FC) between the supramarginal gyrus and rostrolateral prefrontal cortex was significantly reduced in patients with high myopia. The present study aims to investigate the role of the alternation of resting-state FC among the bilateral visual cortex and hypothalamus in exerting anti-myopia effects of EA in GC-enhanced lens-induced myopic (LIM) guinea pigs such that the mechanisms of EA to treat GC-enhanced myopia at Shenshu (BL23) acupoints can be probed. To confirm the effects of EA, ocular parameters including axial length and GC-associated physiological parameters such as animal appearance, behavior, bodyweight, and levels of four HPAA-associated plasma hormones [free triiodothyronine (FT3), free thyroxine (FT4), estradiol (E2), and testosterone (T)] were also collected. Increased resting-state FC between the left and right visual cortex was detected in GC-enhanced lens-induced myopic guinea pigs with EA at BL23 acupoints (LIM+GC+EA) guinea pigs compared to GC-enhanced lens-induced myopic guinea pigs with EA at sham acupoints (LIM+GC+Sham) guinea pigs, as well as suppressed myopia and recovery of symptoms initially caused by overdose of GC. Recovered symptoms included improved animal appearance, behavior, bodyweight, and HPAA-associated plasma hormone levels were observed after 4 weeks of EA treatment. In contrast, the LIM+GC+Sham group showed decreased FC with elongation of axial length for myopization as compared to the control group and LIM group and exhibited a deterioration in physiological parameters including reduced body weight and balance disruption in the four measured HPAA-associated plasma hormones. Our findings suggest that EA could effectively treat GC-enhanced myopia by increasing resting-state FC between the left and right visual cortices, which may be pivotal to further understanding the application and mechanisms of EA in treating GC-enhanced myopia.


Sign in / Sign up

Export Citation Format

Share Document