scholarly journals Local GABA concentration is related to network-level resting functional connectivity

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Charlotte J Stagg ◽  
Velicia Bachtiar ◽  
Ugwechi Amadi ◽  
Christel A Gudberg ◽  
Andrei S Ilie ◽  
...  

Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these ‘resting state networks’ is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies.

2019 ◽  
Author(s):  
Hannes Almgren ◽  
Frederik Van de Steen ◽  
Adeel Razi ◽  
Karl Friston ◽  
Daniele Marinazzo

AbstractThe influence of the global BOLD signal on resting state functional connectivity in fMRI data remains a topic of debate, with little consensus. In this study, we assessed the effects of global signal regression (GSR) on effective connectivity within and between resting-state networks – as estimated with dynamic causal modelling (DCM) for resting state fMRI (rsfMRI). DCM incorporates a forward (generative) model that quantifies the contribution of different types of noise (including global measurement noise), effective connectivity, and (neuro)vascular processes to functional connectivity measurements. DCM analyses were applied to two different designs; namely, longitudinal and cross-sectional designs. In the modelling of longitudinal designs, we included four extensive longitudinal resting state fMRI datasets with a total number of 20 subjects. In the analysis of cross-sectional designs, we used rsfMRI data from 361 subjects from the Human Connectome Project. We hypothesized that (1) GSR would have no discernible impact on effective connectivity estimated with DCM, and (2) GSR would be reflected in the parameters representing global measurement noise. Additionally, we performed comparative analyses of the informative value of data with and without GSR. Our results showed negligible to small effects of GSR on connectivity within small (separately estimated) RSNs. For between-network connectivity, we found two important effects: the effect of GSR on between-network connectivity (averaged over all connections) was negligible to small, while the effect of GSR on individual connections was non-negligible. Contrary to our expectations, we found either no effect (in the longitudinal designs) or a non-specific (cross-sectional design) effect of GSR on parameters representing (global) measurement noise. Data without GSR were found to be more informative than data with GSR; however, in small resting state networks the precision of posterior estimates was greater using data after GSR. In conclusion, GSR is a minor concern in DCM studies; however, individual between-network connections (as opposed to average between-network connectivity) and noise parameters should be interpreted quantitatively with some caution. The Kullback-Leibler divergence of the posterior from the prior, together with the precision of posterior estimates, might offer a useful measure to assess the appropriateness of GSR, when nuancing data features in resting state fMRI.


Cephalalgia ◽  
2017 ◽  
Vol 38 (7) ◽  
pp. 1237-1244 ◽  
Author(s):  
Faisal Mohammad Amin ◽  
Anders Hougaard ◽  
Stefano Magon ◽  
Till Sprenger ◽  
Frauke Wolfram ◽  
...  

Background Functional connectivity of brain networks may be altered in migraine without aura patients. Functional magnetic resonance imaging (fMRI) studies have demonstrated changed activity in the thalamus, pons and cerebellum in migraineurs. Here, we investigated the thalamic, pontine and cerebellar network connectivity during spontaneous migraine attacks. Methods Seventeen patients with episodic migraine without aura underwent resting-state fMRI scan during and outside of a spontaneous migraine attack. Primary endpoint was a difference in functional connectivity between the attack and the headache-free days. Functional connectivity was assessed in four different networks using seed-based analysis. The chosen seeds were in the thalamus (MNI coordinates x,y,z: right, 22,–24,0 and left, –22,–28,6), pons (right, 8,–24,–32 and left, –8,–24,–32), cerebellum crus I (right, 46,–58,–30 and left, –46,–58,–30) and cerebellum lobule VI (right, 34,–42,–36 and left, –32,–42,–36). Results We found increased functional connectivity between the right thalamus and several contralateral brain regions (superior parietal lobule, insular cortex, primary motor cortex, supplementary motor area and orbitofrontal cortex). There was decreased functional connectivity between the right thalamus and three ipsilateral brain areas (primary somatosensory cortex and premotor cortex). We found no change in functional connectivity in the pontine or the cerebellar networks. Conclusions The study indicates that network connectivity between thalamus and pain modulating as well as pain encoding cortical areas are affected during spontaneous migraine attacks.


2021 ◽  
Author(s):  
Bethany L. Sussman ◽  
Sarah N. Wyckoff ◽  
Justin M. Fine ◽  
Jennifer Heim ◽  
Angus A. Wilfong ◽  
...  

AbstractBackgroundNormative childhood motor network resting-state fMRI effective connectivity is undefined, yet necessary for translatable dynamic resting-state network informed treatments in pediatric movement disorders.MethodCross-spectral dynamic causal modelling of resting-state fMRI was investigated in 19 neurotypically developing 5-7-year-old children. Fully connected six-node motor network models were created for each hemisphere including primary motor cortex, striatum, subthalamic nucleus, globus pallidus internus, thalamus, and contralateral cerebellum. Parametric Empirical Bayes with exhaustive Bayesian model reduction and Bayesian modeling averaging were used to create a group model for each hemisphere; Purdue Pegboard Test (PPBT) scores for relevant hand motor behavior were also entered as a covariate at the group level to determine the brain-behavior relationship.ResultsOverall, the resting-state functional MRI effective connectivity of motor cortico-basal ganglia-cerebellar networks was similar across hemispheres, with greater connectivity in the left hemisphere. The motor network effective connectivity relationships between the nodes were consistent and robust across subjects. Additionally, the PPBT score for each hand was positively correlated with the thalamus to contralateral cerebellum connection.DiscussionThe normative effective connectivity from resting-state functional MRI in children largely reflect the direction of inter-nodal signal predicted by other prior modalities and was consistent and robust across subjects, with differences from these prior task-dependent modalities that likely reflect the motor rest-action state during acquisition. Effective connectivity of the motor network was correlated with motor behavior, indicating effective connectivity brain-behavior relationship has physiological meaning in the normally developing. Thus, it may be helpful for future studies in children with movement disorders, wherein comparison to normative effective connectivity will be critical for network-targeted intervention.Impact StatementThis is the first study to use pediatric resting-state functional MRI to create a normative effective connectivity model of the motor network and to also show correlation with behavior, which may have therapeutic implications for children with movement disorders.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. Stefan Greulich ◽  
Ramina Adam ◽  
Stefan Everling ◽  
Hansjörg Scherberger

Abstract Manipulation of an object requires us to transport our hand towards the object (reach) and close our digits around that object (grasp). In current models, reach-related information is propagated in the dorso-medial stream from posterior parietal area V6A to medial intraparietal area, dorsal premotor cortex, and primary motor cortex. Grasp-related information is processed in the dorso-ventral stream from the anterior intraparietal area to ventral premotor cortex and the hand area of primary motor cortex. However, recent studies have cast doubt on the validity of this separation in separate processing streams. We investigated in 10 male rhesus macaques the whole-brain functional connectivity of these areas using resting state fMRI at 7-T. Although we found a clear separation between dorso-medial and dorso-ventral network connectivity in support of the two-stream hypothesis, we also found evidence of shared connectivity between these networks. The dorso-ventral network was distinctly correlated with high-order somatosensory areas and feeding related areas, whereas the dorso-medial network with visual areas and trunk/hindlimb motor areas. Shared connectivity was found in the superior frontal and precentral gyrus, central sulcus, intraparietal sulcus, precuneus, and insular cortex. These results suggest that while sensorimotor processing streams are functionally separated, they can access information through shared areas.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xinzhi Cao ◽  
Zhiyu Qian ◽  
Qiang Xu ◽  
Junshu Shen ◽  
Zhiqiang Zhang ◽  
...  

Examining the resting-state networks (RSNs) may help us to understand the neural mechanism of the frontal lobe epilepsy (FLE). Resting-state functional MRI (fMRI) data were acquired from 46 patients with FLE (study group) and 46 age- and gender-matched healthy subjects (control group). The independent component analysis (ICA) method was used to identify RSNs from each group. Compared with the healthy subjects, decreased functional connectivity was observed in all the networks; however, in some areas of RSNs, functional connectivity was increased in patients with FLE. The duration of epilepsy and the seizure frequency were used to analyze correlation with the regions of interest (ROIs) in the nine RSNs to determine their influence on FLE. The functional network connectivity (FNC) was used to study the impact on the disturbance and reorganization of FLE. The results of this study may offer new insight into the neuropathophysiological mechanisms of FLE.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Velicia Bachtiar ◽  
Jamie Near ◽  
Heidi Johansen-Berg ◽  
Charlotte J Stagg

We previously demonstrated that network level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (<xref ref-type="bibr" rid="bib24">Stagg et al., 2014</xref>). In this study, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 min of 1 mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex; these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Heng-Le Wei ◽  
Xin Zhou ◽  
Yu-Chen Chen ◽  
Yu-Sheng Yu ◽  
Xi Guo ◽  
...  

Abstract Background Resting-state functional magnetic resonance imaging (fMRI) has confirmed disrupted visual network connectivity in migraine without aura (MwoA). The thalamus plays a pivotal role in a number of pain conditions, including migraine. However, the significance of altered thalamo-visual functional connectivity (FC) in migraine remains unknown. The goal of this study was to explore thalamo-visual FC integrity in patients with MwoA and investigate its clinical significance. Methods Resting-state fMRI data were acquired from 33 patients with MwoA and 22 well-matched healthy controls. After identifying the visual network by independent component analysis, we compared neural activation in the visual network and thalamo-visual FC and assessed whether these changes were linked to clinical characteristics. We used voxel-based morphometry to determine whether functional differences were dependent on structural differences. Results The visual network exhibited significant differences in regions (bilateral cunei, right lingual gyrus and left calcarine sulcus) by inter-group comparison. The patients with MwoA showed significantly increased FC between the left thalami and bilateral cunei and between the right thalamus and the contralateral calcarine sulcus and right cuneus. Furthermore, the neural activation of the left calcarine sulcus was positively correlated with visual analogue scale scores (r = 0.319, p = 0.043), and enhanced FC between the left thalamus and right cuneus in migraine patients was negatively correlated with Generalized Anxiety Disorder scores (r = − 0.617, p = 0.005). Conclusion Our data suggest that migraine distress is exacerbated by aberrant feedback projections to the visual network, playing a crucial role in migraine physiological mechanisms. The current study provides further insights into the complex scenario of migraine mechanisms.


2020 ◽  
Author(s):  
Behnaz Yousefi ◽  
Shella Keilholz

The intrinsic activity of the human brain, observed with resting-state fMRI (rsfMRI) and functional connectivity, exhibits macroscale spatial organization such as resting-state networks (RSNs) and functional connectivity gradients (FCGs). Dynamic analysis techniques have shown that the time-averaged maps captured by functional connectivity are mere summaries of time-varying patterns with distinct spatial and temporal characteristics. A better understanding of these patterns might provide insight into aspects of the brain intrinsic activity that cannot be inferred by functional connectivity, RSNs or FCGs. Here, we describe three spatiotemporal patterns of coordinated activity across the whole brain obtained by averaging similar ~20-second-long segments of rsfMRI timeseries. In each of these patterns, activity propagates along a particular macroscale FCG, simultaneously across the cortical sheet and in most other brain regions. In some areas, like the thalamus, the propagation suggests previously-undescribed FCGs. The coordinated activity across areas is consistent with known tract-based connections, and nuanced differences in the timing of peak activity between brain regions point to plausible driving mechanisms. The magnitude of correlation within and particularly between RSNs is remarkably diminished when these patterns are regressed from the rsfMRI timeseries, a quantitative demonstration of their significant role in functional connectivity. Taken together, our results suggest that a few recurring patterns of propagating intrinsic activity along macroscale gradients give rise to and coordinate functional connections across the whole brain.


Sign in / Sign up

Export Citation Format

Share Document