Abstract WMP41: Neuronal Sirt1 is Required for Resveratrol Preconditioning Induced Ischemic Tolerance

Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Kevin B Koronowski ◽  
Isa Saul ◽  
Zachary Balmuth-Loris ◽  
Miguel Perez-Pinzon

Introduction: Our previous work demonstrates that resveratrol, a naturally occurring polyphenol, protects against cerebral ischemia when administered 2 or 14 days prior to injury. Resveratrol activates Sirt1, an NAD + -dependent deacylase that regulates cellular metabolism. It has been postulated that neuronal Sirt1 directly mediates this neuroprotection but it remains to be empirically tested. Objective: The objective of this study was to generate an inducible, neuronal-specific Sirt1 knockout mouse and determine whether neuronal Sirt1 is necessary for resveratrol-induced ischemic tolerance. Methods: Twenty to twenty-five gram neuronal-specific Sirt1 knockout mice (Sirt1neu-/-) and WTs were induced with tamoxifen. Mice were randomized for 1) western blot; 2) resveratrol preconditioning (RPC; 10 mg/kg resveratrol i.p.) or vehicle (1.5% DMSO; 0.9% saline) treatment 2 days prior to 60 minute middle cerebral artery occlusion (MCAo); 3) untargeted primary metabolomics by GC-TOF-MS; or 4) transcription factor activation profiling. Twenty-four hours following MCAo, neurological score was used to assess functional outcome and infarct volume was quantified by TTC staining. Results: Tamoxifen treatment removed WT Sirt1 protein from major brain regions but not from heart (Figure 1A, n=3). In WT, RPC reduced infarct volume by 43.7% and improved neurological score by nearly 3 points, however these effects were lost in Sirt1neu-/- (Figure 1B, n=5-9). Compared to WT, metabolic profiles from Sirt1neu-/- displayed significantly altered glycolysis metabolites (Figure 1C, n=8). Activation of hypoxia inducible factor (HIF) was reduced by 48% in Sirt1neu-/- (Figure 1D, n=3). Conclusions: We generated and utilized an inducible, neuronal-specific knockout mouse to demonstrate that neuronal Sirt1 specifically is required for RPC-induced ischemic tolerance. Additionally, Sirt1 regulates glycolysis in the brain, possibly through its interaction with HIF.

2020 ◽  
Author(s):  
Xiu-Lan Sun ◽  
Teng-Fei Xue ◽  
Juan Ji ◽  
Ruo-Bing Guo ◽  
Yu-Qin Sun ◽  
...  

Abstract Background: Activation of TREM2 protects against brain injury in ischemic stroke via immunoregulation. However, the endogenous ligand of TREM2 remains unknown. Here, we tested the hypothesis that S1P, an immunoregulator, functions as TREM2 ligand to promote microglial phagocytosis.Methods: SD rats, C57BL/6J mice and TREM2-/- mice were subjected to transient middle cerebral artery occlusion, and primary microglia were subjected to oxygen-glucose deprivation. Phagocytosis was investigated via immunofluorescence and two-photon microscope. LC-MS/MS, microscale thermophoresis and surface plasmon resonance were used to confirm the TREM2-S1P interaction.Results: FTY720, an analog of S1P, promoted microglial phagocytosis in ischemic stroke independent of S1PRs expressed on microglia. S1P was confirmed to be a novel endogenous ligand for TREM2 and promote cellular debris clearance. The enhanced cellular debris clearance ameliorated neurological score and infarct volume, relying on TREM2. Moreover, FTY720 was demonstrated to promote hemoglobin clearance in intracerebral hemorrhage and ameliorate hemorrhagic injury.Conlusions: The present work reveals for the first time that S1P acts as a novel endogenous ligand of TREM2 to effectively promote microglial phagocytosis, and provides a new lead compound for developing TREM2 modulator.


2002 ◽  
Vol 22 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Michiko Nakamura ◽  
Kazuhiko Nakakimura ◽  
Mishiya Matsumoto ◽  
Takefumi Sakabe

Two types of ischemic tolerance in the brain, rapid and delayed, have been reported in terms of the interval between the conditioning and test insults. Although many reports showed that delayed-phase neuroprotection evoked by preconditioning is evident after 1 week or longer, there have been a few investigations about rapidly induced tolerance, and the reported neuroprotective effects become ambiguous 7 days after the insults. The authors examined whether this rapid ischemic tolerance exists after 7 days of reperfusion in a rat focal ischemic model, and investigated modulating effects of the adenosine A1 receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine). Preconditioning with 30 minutes of middle cerebral artery occlusion reduced infarct volume 7 days after 180 minutes of subsequent focal ischemia given after 1-hour reperfusion. The rapid preconditioning also improved neurologic outcome. These beneficial effects were attenuated by pretreatment of 0.1 mg/kg DPCPX, which did not influence the infarct volume after conditioning (30 minutes) or test (180 minutes) ischemia when given alone. The results show that preconditioning with a brief focal ischemia induces rapid tolerance to a subsequent severe ischemic insult, the effect of which is still present after 7 days of reperfusion, and that the rapid ischemic tolerance is possibly mediated through an adenosine A1 receptor–related mechanism.


2008 ◽  
Vol 28 (12) ◽  
pp. 1907-1916 ◽  
Author(s):  
Michelle A Puchowicz ◽  
Jennifer L Zechel ◽  
Jose Valerio ◽  
Douglas S Emancipator ◽  
Kui Xu ◽  
...  

Neuroprotective properties of ketosis may be related to the upregulation of hypoxia inducible factor (HIF)-1α, a primary constituent associated with hypoxic angiogenesis and a regulator of neuroprotective responses. The rationale that the utilization of ketones by the brain results in elevation of intracellular succinate, a known inhibitor of prolyl hydroxylase (the enzyme responsible for the degradation of HIF-1α) was deemed as a potential mechanism of ketosis on the upregulation of HIF-1α. The neuroprotective effect of diet-induced ketosis (3 weeks of feeding a ketogenic diet), as pretreatment, on infarct volume, after reversible middle cerebral artery occlusion (MCAO), and the upregulation of HIF-1α were investigated. The effect of β-hydroxybutyrate (BHB), as a pretreatment, via intraventricular infusion (4 days of infusion before stroke) was also investigated following MCAO. Levels of HIF-1α and Bcl-2 (anti-apoptotic protein) proteins and succinate content were measured. A 55% or 70% reduction in infarct volume was observed with BHB infusion or diet-induced ketosis, respectively. The levels of HIF-1α and Bcl-2 proteins increased threefold with diet-induced ketosis; BHB infusions also resulted in increases in these proteins. As hypothesized, succinate content increased by 55% with diet-induced ketosis and fourfold with BHB infusion. In conclusion, the biochemical link between ketosis and the stabilization of HIF-1α is through the elevation of succinate, and both HIF-1α stabilization and Bcl-2 upregulation play a role in ketone-induced neuroprotection in the brain.


2000 ◽  
Vol 20 (8) ◽  
pp. 1190-1196 ◽  
Author(s):  
Régis Bordet ◽  
Dominique Deplanque ◽  
Patrice Maboudou ◽  
François Puisieux ◽  
Qian Pu ◽  
...  

A low dose (0.5 mg/kg) of lipopolysaccharide (LPS), administered 72 hours before 60-minute middle cerebral artery occlusion, induced a delayed neuroprotection proven by the significant decrease (–35%) of brain infarct volume in comparison with control, whereas infarct volumes remained unchanged in rats treated 12, 24, or 168 hours before ischemia. This delayed neuroprotective effect of LPS was induced only with low doses (0.25 to 1 mg/kg), whereas this effect disappeared with a higher dose (2 mg/kg). The delayed neuroprotection of LPS was induced in the cortical part of the infarcted zone, not in the subcortical part. The beneficial effect of LPS on consequences of middle cerebral artery occlusion was suppressed by dexamethasone (3 mg/kg) and indomethacin (3 mg/kg) administered 1 hour before LPS, whereas both drugs had no direct effect on infarct volume by themselves, suggesting that activation of inflammatory pathway is involved in the development of LPS-induced brain ischemic tolerance. Preadministration of cycloheximide, an inhibitor of protein synthesis, also blocked LPS-induced brain ischemic tolerance suggesting that a protein synthesis is also necessary as a mediating mechanism. Superoxide dismutase (SOD) could be one of the synthesized proteins because lipopolysaccharide increased SOD brain activity 72 hours, but not 12 hours, after its administration, which paralleled the development of brain ischemic tolerance. In contrast, catalase brain activity remained unchanged after LPS administration. The LPS-induced delayed increase in SOD brain content was suppressed by a previous administration of indomethacin. These data suggest that the delayed neuroprotective effect of low doses of LPS is mediated by an increased synthesis of brain SOD that could be triggered by activation of inflammatory pathway.


Author(s):  
Yea-Ru Yang ◽  
Ray-Yau Wang ◽  
Paulus Shyi-Gang Wang ◽  
Shang-Ming Yu

Background:Treadmill training is used for promoting rhythmical vigorous walking and for task-related training in patients with stroke. The neurological impact of treadmill training has not been established. The present investigation is aimed at (1) examining neurological changes over a four-week period after middle cerebral artery occlusion (MCAO) in rats and (2) assessing the impact of one-week, two-week and four-week treadmill training in MCAO rats.Methods:Male Sprague-Dawley rats were subjected to 60-minute right MCAO. All rats were randomly assigned to one of seven groups. Infarct volume and neurological score were measured.Results:Rats sacrificed 24 hours post MCAO had the largest infarct volumes (171.4 ± 14.4 mm3) and the highest neurological score (median: 2, range: 1-3). We noted that without treadmill training, infarct sizes and neurological score diminished with time. Treadmill training for at least one week further reduced infarct volume and significantly improved neurologic function in MCAO rats.Conclusion:Treadmill training after focal cerebral ischemia significantly improves neurological outcome in MCAO rats. Treadmill training may be beneficial for ischemic brain recovery.


2019 ◽  
Vol 11 (5) ◽  
pp. 983-1000 ◽  
Author(s):  
Shu-Na Wang ◽  
Zhi Wang ◽  
Tian-Ying Xu ◽  
Ming-He Cheng ◽  
Wen-Lin Li ◽  
...  

AbstractStroke is the second leading cause of death and main cause of disability worldwide, but with few effective therapies. Although stem cell-based therapy has been proposed as an exciting regenerative medicine strategy for brain injury, there are limitations. The developed cerebral organoids (COs) represent a promising transplantation source for stroke that remains to be answered. Here, we transplanted COs at 55 days and explored the feasibility in the rat middle cerebral artery occlusion (MCAO) model of stroke. COs transplantation at 6 h or even 24 h after MCAO significantly reduces brain infarct volume and improves neurological motor function. Transplanted COs show the potential of multilineage differentiation to mimic in vivo cortical development, support motor cortex region-specific reconstruction, form neurotransmitter-related neurons, and achieve synaptic connection with host brain via in situ differentiation and cell replacement in stroke. Cells from transplanted COs show extensive migration into different brain regions along corpus callosum. The mechanisms underlying COs transplantation therapy are also associated with enhanced neurogenesis, synaptic reconstruction, axonal regeneration and angiogenesis, and decreased neural apoptosis with more survival neurons after stroke. Moreover, COs transplantation promotes predominantly exogenous neurogenesis in the transplantation periphery of ipsilateral cortex and predominantly endogenous neurogenesis in the hippocampus and subventricular zone. Together, we demonstrate the efficacy and underlying mechanisms of COs transplantation in stroke. This preliminary but promising study provides first-hand preclinical evidence for COs transplantation as a potential and effective intervention for stroke treatment.


2021 ◽  
pp. 0271678X2199439
Author(s):  
Cen Yang ◽  
Jingjing Liu ◽  
Jingyi Wang ◽  
Anqi Yin ◽  
Zhenhua Jiang ◽  
...  

There are no effective treatments for stroke. The activation of endogenous protective mechanisms is a promising therapeutic approach, which evokes the intrinsic ability of the brain to protect itself. Accumulated evidence strongly suggests that electroacupuncture (EA) pretreatment induces rapid tolerance to cerebral ischemia. With regard to mechanisms underlying ischemic tolerance induced by EA, many molecules and signaling pathways are involved, such as the endocannabinoid system, although the exact mechanisms have not been fully elucidated. In the current study, we employed mutant mice, neuropharmacology, microdialysis, and virus transfection techniques in a middle cerebral artery occlusion (MCAO) model to explore the cell-specific and brain region-specific mechanisms of EA-induced neuroprotection. EA pretreatment resulted in increased ambient endocannabinoid (eCB) levels and subsequent activation of ischemic penumbral astroglial cannabinoid type 1 receptors (CB1R) which led to moderate upregulation of extracellular glutamate that protected neurons from cerebral ischemic injury. These findings provide a novel cellular mechanism of EA and a potential therapeutic target for ischemic stroke.


2020 ◽  
Vol 11 (1) ◽  
pp. 48-59
Author(s):  
Martin Juenemann ◽  
Tobias Braun ◽  
Nadine Schleicher ◽  
Mesut Yeniguen ◽  
Patrick Schramm ◽  
...  

AbstractObjectiveThis study was designed to investigate the indirect neuroprotective properties of recombinant human erythropoietin (rhEPO) pretreatment in a rat model of transient middle cerebral artery occlusion (MCAO).MethodsOne hundred and ten male Wistar rats were randomly assigned to four groups receiving either 5,000 IU/kg rhEPO intravenously or saline 15 minutes prior to MCAO and bilateral craniectomy or sham craniectomy. Bilateral craniectomy aimed at elimination of the space-consuming effect of postischemic edema. Diagnostic workup included neurological examination, assessment of infarct size and cerebral edema by magnetic resonance imaging, wet–dry technique, and quantification of hemispheric and local cerebral blood flow (CBF) by flat-panel volumetric computed tomography.ResultsIn the absence of craniectomy, EPO pretreatment led to a significant reduction in infarct volume (34.83 ± 9.84% vs. 25.28 ± 7.03%; p = 0.022) and midline shift (0.114 ± 0.023 cm vs. 0.083 ± 0.027 cm; p = 0.013). We observed a significant increase in regional CBF in cortical areas of the ischemic infarct (72.29 ± 24.00% vs. 105.53 ± 33.10%; p = 0.043) but not the whole hemispheres. Infarct size-independent parameters could not demonstrate a statistically significant reduction in cerebral edema with EPO treatment.ConclusionsSingle-dose pretreatment with rhEPO 5,000 IU/kg significantly reduces ischemic lesion volume and increases local CBF in penumbral areas of ischemia 24 h after transient MCAO in rats. Data suggest indirect neuroprotection from edema and the resultant pressure-reducing and blood flow-increasing effects mediated by EPO.


2002 ◽  
Vol 283 (3) ◽  
pp. H1005-H1011 ◽  
Author(s):  
Katsuyoshi Shimizu ◽  
Zsombor Lacza ◽  
Nishadi Rajapakse ◽  
Takashi Horiguchi ◽  
James Snipes ◽  
...  

We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K+ (mitoKATP) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 μl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 ± 0.7, n = 13) compared with sham treatment (9.5 ± 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 ± 3.6% ( n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 ± 4.8% ( n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 μl saline), a selective blocker of mitoKATP channels ( n = 6). These results indicate that selective opening of the mitoKATP channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.


Sign in / Sign up

Export Citation Format

Share Document