Inflammation and the Link to Vascular Brain Health: Timing Is Brain

Stroke ◽  
2022 ◽  
Author(s):  
Katherine T. Mun ◽  
Jason D. Hinman

Inflammation and its myriad pathways are now recognized to play both causal and consequential roles in vascular brain health. From acting as a trigger for vascular brain injury, as evidenced by the coronavirus disease 2019 (COVID-19) pandemic, to steadily increasing the risk for chronic cerebrovascular disease, distinct inflammatory cascades play differential roles in varying states of cerebrovascular injury. New evidence is regularly emerging that characterizes the role of specific inflammatory pathways in these varying states including those at risk for stroke and chronic cerebrovascular injury as well as during the acute, subacute, and repair phases of stroke. Here, we aim to highlight recent basic science and clinical evidence for many distinct inflammatory cascades active in these varying states of cerebrovascular injury. The role of cerebrovascular infections, spotlighted by the severe acute respiratory syndrome coronavirus 2 pandemic, and its association with increased stroke risk is also reviewed. Rather than converging on a shared mechanism, these emerging studies implicate varied and distinct inflammatory processes in vascular brain injury and repair. Recognition of the phasic nature of inflammatory cascades on varying states of cerebrovascular disease is likely essential to the development and implementation of an anti-inflammatory strategy in the prevention, treatment, and repair of vascular brain injury. Although advances in revascularization have taught us that time is brain, targeting inflammation for the treatment of cerebrovascular disease will undoubtedly show us that timing is brain.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 586 ◽  
Author(s):  
Hamilton Roschel ◽  
Bruno Gualano ◽  
Sergej M. Ostojic ◽  
Eric S. Rawson

There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer’s disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.


2016 ◽  
Vol 130 (4) ◽  
pp. 221-238 ◽  
Author(s):  
Abdelrahman Y. Fouda ◽  
Sandeep Artham ◽  
Azza B. El-Remessy ◽  
Susan C. Fagan

This review examines the published literature on the role of the renin-angiotensin system in neurovascular disorders including stroke, retinopathy, traumatic brain injury and cognitive impairment. The review presents both experimental and clinical studies conducted in the field, and sheds light on the translational gap and clinical underutilization of renin-angiotensin system modulators in neurovascular disorders.


2017 ◽  
Vol 44 (02) ◽  
pp. 114-125 ◽  
Author(s):  
James Luyendyk ◽  
Ton Lisman

AbstractPlatelets are key players in thrombosis and hemostasis. Alterations in platelet count and function are common in liver disease, and may contribute to bleeding or thrombotic complications in liver diseases and during liver surgery. In addition to their hemostatic function, platelets may modulate liver diseases by mechanisms that are incompletely understood. Here, we present clinical evidence for a role of platelets in the progression of chronic and acute liver diseases, including cirrhosis, acute liver failure, and hepatocellular carcinoma. We also present clinical evidence that platelets promote liver regeneration following partial liver resection. Subsequently, we summarize studies in experimental animal models that support these clinical observations, and also highlight studies that are in contrast with clinical observations. The combined results of clinical and experimental studies suggest that platelets may be a therapeutic target in the treatment of liver injury and repair, but the gaps in our understanding of mechanisms involved in platelet-mediated modulation of liver diseases call for caution in clinical application of these findings.


Sign in / Sign up

Export Citation Format

Share Document