scholarly journals A Neural Model of Contour Integration in the Primary Visual Cortex

1998 ◽  
Vol 10 (4) ◽  
pp. 903-940 ◽  
Author(s):  
Zhaoping Li

Experimental observations suggest that contour integration may take place in V1. However, there has yet to be a model of contour integration that uses only known V1 elements, operations, and connection patterns.This article introduces such a model, using orient ation selective cells, local cortical circuits, and horizontal intracortical connections. The model is composed of recurrently connected excitatory neurons and inhibitory interneurons, receiving visual input via oriented receptive fields resembling those found in primary visual cortex. Intracortical interactions modify initial activity patterns from input, selectively amplifying the activities of edges that form smooth contours in the image. The neural activities produced by such interactions are oscillatory and edge segments within a contour oscillate in synchrony. It is shown analytically and empirically that the extent of contour enhancement and neural synchrony increases with the smoothness, length, and closure of contours, as observed in experiments on some of these phenomena. In addition, the model incorporates a feedback mechanism that allows higher visual centers selectively to enhance or suppress sensitivities to given contours, effectively segmenting one from another. The model makes the testable prediction that the horizontal cortical connections are more likely to target excitatory (or inhibitory) cells when the two linked cells have their preferred orientation aligned with (or orthogonal to) their relative receptive field center displacements.

2000 ◽  
Vol 83 (2) ◽  
pp. 1019-1030 ◽  
Author(s):  
Valentin Dragoi ◽  
Mriganka Sur

A fundamental feature of neural circuitry in the primary visual cortex (V1) is the existence of recurrent excitatory connections between spiny neurons, recurrent inhibitory connections between smooth neurons, and local connections between excitatory and inhibitory neurons. We modeled the dynamic behavior of intermixed excitatory and inhibitory populations of cells in V1 that receive input from the classical receptive field (the receptive field center) through feedforward thalamocortical afferents, as well as input from outside the classical receptive field (the receptive field surround) via long-range intracortical connections. A counterintuitive result is that the response of oriented cells can be facilitated beyond optimal levels when the surround stimulus is cross-oriented with respect to the center and suppressed when the surround stimulus is iso-oriented. This effect is primarily due to changes in recurrent inhibition within a local circuit. Cross-oriented surround stimulation leads to a reduction of presynaptic inhibition and a supraoptimal response, whereas iso-oriented surround stimulation has the opposite effect. This mechanism is used to explain the orientation and contrast dependence of contextual interactions in primary visual cortex: responses to a center stimulus can be both strongly suppressed and supraoptimally facilitated as a function of surround orientation, and these effects diminish as stimulus contrast decreases.


2012 ◽  
Vol 28 (3) ◽  
pp. 791-798 ◽  
Author(s):  
Xiao Y. Wu ◽  
Zong X. Mou ◽  
Wen S. Hou ◽  
Xiao L. Zheng ◽  
Jun P. Yao ◽  
...  

2018 ◽  
Author(s):  
Petr Znamenskiy ◽  
Mean-Hwan Kim ◽  
Dylan R. Muir ◽  
Maria Florencia Iacaruso ◽  
Sonja B. Hofer ◽  
...  

In the cerebral cortex, the interaction of excitatory and inhibitory synaptic inputs shapes the responses of neurons to sensory stimuli, stabilizes network dynamics1 and improves the efficiency and robustness of the neural code2–4. Excitatory neurons receive inhibitory inputs that track excitation5–8. However, how this co-tuning of excitation and inhibition is achieved by cortical circuits is unclear, since inhibitory interneurons are thought to pool the inputs of nearby excitatory cells and provide them with non-specific inhibition proportional to the activity of the local network9–13. Here we show that although parvalbumin-expressing (PV) inhibitory cells in mouse primary visual cortex make connections with the majority of nearby pyramidal cells, the strength of their synaptic connections is structured according to the similarity of the cells’ responses. Individual PV cells strongly inhibit those pyramidal cells that provide them with strong excitation and share their visual selectivity. This fine-tuning of synaptic weights supports co-tuning of inhibitory and excitatory inputs onto individual pyramidal cells despite dense connectivity between inhibitory and excitatory neurons. Our results indicate that individual PV cells are preferentially integrated into subnetworks of inter-connected, co-tuned pyramidal cells, stabilising their recurrent dynamics. Conversely, weak but dense inhibitory connectivity between subnetworks is sufficient to support competition between them, de-correlating their output. We suggest that the history and structure of correlated firing adjusts the weights of both inhibitory and excitatory connections, supporting stable amplification and selective recruitment of cortical subnetworks.


2000 ◽  
Vol 84 (4) ◽  
pp. 2048-2062 ◽  
Author(s):  
Mitesh K. Kapadia ◽  
Gerald Westheimer ◽  
Charles D. Gilbert

To examine the role of primary visual cortex in visuospatial integration, we studied the spatial arrangement of contextual interactions in the response properties of neurons in primary visual cortex of alert monkeys and in human perception. We found a spatial segregation of opposing contextual interactions. At the level of cortical neurons, excitatory interactions were located along the ends of receptive fields, while inhibitory interactions were strongest along the orthogonal axis. Parallel psychophysical studies in human observers showed opposing contextual interactions surrounding a target line with a similar spatial distribution. The results suggest that V1 neurons can participate in multiple perceptual processes via spatially segregated and functionally distinct components of their receptive fields.


2016 ◽  
Vol 12 (12) ◽  
pp. e1005185 ◽  
Author(s):  
Benjamin R. Cowley ◽  
Matthew A. Smith ◽  
Adam Kohn ◽  
Byron M. Yu

1997 ◽  
Vol 9 (5) ◽  
pp. 959-970 ◽  
Author(s):  
Christian Piepenbrock ◽  
Helge Ritter ◽  
Klaus Obermayer

Correlation-based learning (CBL) has been suggested as the mechanism that underlies the development of simple-cell receptive fields in the primary visual cortex of cats, including orientation preference (OR) and ocular dominance (OD) (Linsker, 1986; Miller, Keller, & Stryker, 1989). CBL has been applied successfully to the development of OR and OD individually (Miller, Keller, & Stryker, 1989; Miller, 1994; Miyashita & Tanaka, 1991; Erwin, Obermayer, & Schulten, 1995), but the conditions for their joint development have not been studied (but see Erwin & Miller, 1995, for independent work on the same question) in contrast to competitive Hebbian models (Obermayer, Blasdel, & Schulten, 1992). In this article, we provide insight into why this has been the case: OR and OD decouple in symmetric CBL models, and a joint development of OR and OD is possible only in a parameter regime that depends on nonlinear mechanisms.


2005 ◽  
Vol 94 (1) ◽  
pp. 788-798 ◽  
Author(s):  
Valerio Mante ◽  
Matteo Carandini

A recent optical imaging study of primary visual cortex (V1) by Basole, White, and Fitzpatrick demonstrated that maps of preferred orientation depend on the choice of stimuli used to measure them. These authors measured population responses expressed as a function of the optimal orientation of long drifting bars. They then varied bar length, direction, and speed and found that stimuli of a same orientation can elicit different population responses and stimuli with different orientation can elicit similar population responses. We asked whether these results can be explained from known properties of V1 receptive fields. We implemented an “energy model” where a receptive field integrates stimulus energy over a region of three-dimensional frequency space. The population of receptive fields defines a volume of visibility, which covers all orientations and a plausible range of spatial and temporal frequencies. This energy model correctly predicts the population response to bars of different length, direction, and speed and explains the observations made with optical imaging. The model also readily explains a related phenomenon, the appearance of motion streaks for fast-moving dots. We conclude that the energy model can be applied to activation maps of V1 and predicts phenomena that may otherwise appear to be surprising. These results indicate that maps obtained with optical imaging reflect the layout of neurons selective for stimulus energy, not for isolated stimulus features such as orientation, direction, and speed.


2018 ◽  
Author(s):  
Adam P. Morris ◽  
Bart Krekelberg

SummaryHumans and other primates rely on eye movements to explore visual scenes and to track moving objects. As a result, the image that is projected onto the retina – and propagated throughout the visual cortical hierarchy – is almost constantly changing and makes little sense without taking into account the momentary direction of gaze. How is this achieved in the visual system? Here we show that in primary visual cortex (V1), the earliest stage of cortical vision, neural representations carry an embedded “eye tracker” that signals the direction of gaze associated with each image. Using chronically implanted multi-electrode arrays, we recorded the activity of neurons in V1 during tasks requiring fast (exploratory) and slow (pursuit) eye movements. Neurons were stimulated with flickering, full-field luminance noise at all times. As in previous studies 1-4, we observed neurons that were sensitive to gaze direction during fixation, despite comparable stimulation of their receptive fields. We trained a decoder to translate neural activity into metric estimates of (stationary) gaze direction. This decoded signal not only tracked the eye accurately during fixation, but also during fast and slow eye movements, even though the decoder had not been exposed to data from these behavioural states. Moreover, this signal lagged the real eye by approximately the time it took for new visual information to travel from the retina to cortex. Using simulations, we show that this V1 eye position signal could be used to take into account the sensory consequences of eye movements and map the fleeting positions of objects on the retina onto their stable position in the world.


Author(s):  
Jinwoo Kim ◽  
Min Song ◽  
Se-Bum Paik

AbstractIn the primary visual cortex (V1) of higher mammals, long-range horizontal connections (LHCs) are observed to develop, linking iso-orientation domains of cortical tuning. It is unknown how this feature-specific wiring of circuitry develops before eye opening. Here, we show that LHCs in V1 may originate from spatio-temporally structured feedforward activities generated from spontaneous retinal waves. Using model simulations based on the anatomy and observed activity patterns of the retina, we show that waves propagating in retinal mosaics can initialize the wiring of LHCs by co-activating neurons of similar tuning, whereas equivalent random activities cannot induce such organizations. Simulations showed that emerged LHCs can produce the patterned activities observed in V1, matching topography of the underlying orientation map. We also confirmed that the model can also reproduce orientation-specific microcircuits in salt-and-pepper organizations in rodents. Our results imply that early peripheral activities contribute significantly to cortical development of functional circuits.HighlightsDevelopmental model of long-range horizontal connections (LHCs) in V1 is simulatedSpontaneous retinal waves generate feature-specific wiring of LHCs in visual cortexEmerged LHCs induce orientation-matching patterns of spontaneous cortical activityRetinal waves induce orientation-specific microcircuits of visual cortex in rodentsSignificance statementLong-range horizontal connections (LHCs) in the primary visual cortex (V1) are observed to emerge before the onset of visual experience, selectively connecting iso-domains of orientation maps. However, it is unknown how such tuning-specific wirings develop before eye-opening. Here, we show that LHCs in V1 originate from the tuning-specific activation of cortical neurons by spontaneous retinal waves during early developmental stages. Our simulations of a visual cortex model show that feedforward activities from the retina initialize the spatial organization of activity patterns in V1, which induces visual feature-specific wirings of V1 neurons. Our model also explains the origin of cortical microcircuits observed in rodents, suggesting that the proposed developmental mechanism is applicable universally to circuits of various mammalian species.


Sign in / Sign up

Export Citation Format

Share Document