scholarly journals Plasticity in the Adult Human Auditory Brainstem following Short-term Linguistic Training

2008 ◽  
Vol 20 (10) ◽  
pp. 1892-1902 ◽  
Author(s):  
Judy H. Song ◽  
Erika Skoe ◽  
Patrick C. M. Wong ◽  
Nina Kraus

Peripheral and central structures along the auditory pathway contribute to speech processing and learning. However, because speech requires the use of functionally and acoustically complex sounds which necessitates high sensory and cognitive demands, long-term exposure and experience using these sounds is often attributed to the neocortex with little emphasis placed on subcortical structures. The present study examines changes in the auditory brainstem, specifically the frequency following response (FFR), as native English-speaking adults learn to incorporate foreign speech sounds (lexical pitch patterns) in word identification. The FFR presumably originates from the auditory midbrain and can be elicited preattentively. We measured FFRs to the trained pitch patterns before and after training. Measures of pitch tracking were then derived from the FFR signals. We found increased accuracy in pitch tracking after training, including a decrease in the number of pitch-tracking errors and a refinement in the energy devoted to encoding pitch. Most interestingly, this change in pitch-tracking accuracy only occurred in the most acoustically complex pitch contour (dipping contour), which is also the least familiar to our English-speaking subjects. These results not only demonstrate the contribution of the brainstem in language learning and its plasticity in adulthood but also demonstrate the specificity of this contribution (i.e., changes in encoding only occur in specific, least familiar stimuli, not all stimuli). Our findings complement existing data showing cortical changes after second-language learning, and are consistent with models suggesting that brainstem changes resulting from perceptual learning are most apparent when acuity in encoding is most needed.

2011 ◽  
Vol 23 (2) ◽  
pp. 425-434 ◽  
Author(s):  
Gavin M. Bidelman ◽  
Jackson T. Gandour ◽  
Ananthanarayan Krishnan

Neural encoding of pitch in the auditory brainstem is known to be shaped by long-term experience with language or music, implying that early sensory processing is subject to experience-dependent neural plasticity. In language, pitch patterns consist of sequences of continuous, curvilinear contours; in music, pitch patterns consist of relatively discrete, stair-stepped sequences of notes. The primary aim was to determine the influence of domain-specific experience (language vs. music) on the encoding of pitch in the brainstem. Frequency-following responses were recorded from the brainstem in native Chinese, English amateur musicians, and English nonmusicians in response to iterated rippled noise homologues of a musical pitch interval (major third; M3) and a lexical tone (Mandarin tone 2; T2) from the music and language domains, respectively. Pitch-tracking accuracy (whole contour) and pitch strength (50 msec sections) were computed from the brainstem responses using autocorrelation algorithms. Pitch-tracking accuracy was higher in the Chinese and musicians than in the nonmusicians across domains. Pitch strength was more robust across sections in musicians than in nonmusicians regardless of domain. In contrast, the Chinese showed larger pitch strength, relative to nonmusicians, only in those sections of T2 with rapid changes in pitch. Interestingly, musicians exhibited greater pitch strength than the Chinese in one section of M3, corresponding to the onset of the second musical note, and two sections within T2, corresponding to a note along the diatonic musical scale. We infer that experience-dependent plasticity of brainstem responses is shaped by the relative saliency of acoustic dimensions underlying the pitch patterns associated with a particular domain.


2008 ◽  
Vol 123 (4) ◽  
pp. 462-465 ◽  
Author(s):  
T H J Draper ◽  
D-E Bamiou

AbstractObjective:To report the case of an adult patient who developed auditory complaints following xylene exposure, and to review the literature on the effects of solvent exposure on hearing.Case report:The patient presented with a gradual deterioration in his ability to hear in difficult acoustic environments and also to hear complex sounds such as music, over a 40-year period. His symptoms began following exposure to the solvent xylene, and in the absence of any other risk factor. Our audiological investigations revealed normal otoacoustic emissions with absent auditory brainstem responses and absent acoustic reflexes in both ears, consistent with a diagnosis of bilateral auditory neuropathy. Central test results were also abnormal, indicating possible involvement of the central auditory pathway.Conclusions:To our knowledge, this is the first report of retrocochlear hearing loss following xylene exposure. The test results may provide some insight into the effect of xylene as an isolated agent on the human auditory pathway.


2021 ◽  
Author(s):  
T. Christina Zhao ◽  
Fernando Llanos ◽  
Bharath Chandrasekaran ◽  
Patricia K. Kuhl

The sensitive period for phonetic learning (6~12 months), evidenced by increases in native and declines in nonnative speech processing, represents an early milestone in language acquisition. We examined the extent that sensory encoding of speech is altered by experience during this period by testing two hypotheses: 1) early sensory encoding of nonnative speech declines as infants gain native-language experience, and 2) music intervention reverses this decline. We longitudinally measured the frequency-following response (FFR), a robust indicator of early sensory encoding along the auditory pathway, to a Mandarin lexical tone in 7- and 11-months-old monolingual English-learning infants. Infants received music intervention (music-intervention group) or no intervention (language-experience group) randomly between FFR recordings. The language-experience group exhibited the expected decline in FFR pitch-tracking accuracy to the Mandarin tone while the music-intervention group did not. Our results support both hypotheses and demonstrate that both language and music experience alter infants’ speech encoding.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ning Yao ◽  
Hui Qiao ◽  
Ping Li ◽  
Yang Liu ◽  
Liang Wu ◽  
...  

Background. Cortical hemispherectomy leads to degeneration of ipsilateral subcortical structures, which can be observed long term after the operation. Therefore, reorganization of the brainstem auditory pathway might occur. The aim of this study was to assess reorganization of brainstem auditory pathways by measuring the auditory brainstem response (ABR) in long-term hemispherectomized patients.Methods. We performed bilateral monaural stimulation and measured bilateral ABR in 8 patients~20 years after hemispherectomy and 10 control subjects. Magnetic resonance imaging (MRI) was performed in patients to assess structural degeneration.Results. All patients showed degenerated ipsilateral brainstem structures by MRI but no significant differences in bilateral recording ABR wave latencies. However, nonsurgical-side stimulation elicited significantly longer wave V latencies compared to surgical-side stimulation. Differences in bilateral ABR were observed between hemispherectomized patients and control subjects. Waves III and V latencies elicited by nonsurgical-side stimulation were significantly longer than those in control subjects; surgical-side stimulation showed no significant differences.Conclusions. (1) Differences in ABR latency elicited by unilateral stimulation are predominantly due to bilateral brainstem auditory pathway activity rather than to changes in brainstem volume; (2) ABR Waves III and V originate predominantly in the contralateral brainstem; and (3) subcortical auditory pathways appear to reorganize after long term hemispherectomy.


Author(s):  
Yusra Mansour ◽  
Kaitlyn Blackburn ◽  
Luis Oscar González-González ◽  
Lilian Calderón-Garcidueñas ◽  
Randy J. Kulesza

Alzheimer’s disease (AD) is a biological construct defined by abnormal deposits of hyperphosphorylated tau and amyloid-β. The 2050 projection for AD in the USA is 14 million. There is a strong association between AD, air pollution, and traffic. Early diagnosis is imperative for intervention in the initial disease stages. Hearing and, specifically, the ability to encode complex sounds are impaired in AD. Nuclei in the auditory brainstem appear to be sensitive to neurodevelopmental and neurodegenerative disorders. Specifically, sustained exposure to air pollution is harmful to the brainstem; young residents of Metropolitan Mexico City (MMC) exposed to fine particulate matter and combustion-derived nanoparticles develop AD pathology in infancy. MMC clinically healthy children and teens have significant central delays in brainstem auditory evoked potentials (BAEPs). Herein, we review evidence that the auditory pathway is a key site of AD early pathology associated with air pollution and is significantly involved in AD patients. We strongly suggest electrophysiological screening, including BAEPs, be employed to screen individuals for early delays and to monitor progressive decline in patients diagnosed with mild cognitive impairment and AD. Understanding auditory dysfunction in early AD in pediatric and young adult populations may clarify mechanisms of disease progression. Air pollution is a risk factor for the development of AD and as the number of Americans with AD continues to grow without a cure, we need to focus on preventable, early causes of this fatal disease and intervene appropriately.


2017 ◽  
Vol 117 (2) ◽  
pp. 594-603 ◽  
Author(s):  
Joseph C. Y. Lau ◽  
Patrick C. M. Wong ◽  
Bharath Chandrasekaran

We examined the mechanics of online experience-dependent auditory plasticity by assessing the influence of prior context on the frequency-following responses (FFRs), which reflect phase-locked responses from neural ensembles within the subcortical auditory system. FFRs were elicited to a Cantonese falling lexical pitch pattern from 24 native speakers of Cantonese in a variable context, wherein the falling pitch pattern randomly occurred in the context of two other linguistic pitch patterns; in a patterned context, wherein, the falling pitch pattern was presented in a predictable sequence along with two other pitch patterns, and in a repetitive context, wherein the falling pitch pattern was presented with 100% probability. We found that neural tracking of the stimulus pitch contour was most faithful and accurate when listening context was patterned and least faithful when the listening context was variable. The patterned context elicited more robust pitch tracking relative to the repetitive context, suggesting that context-dependent plasticity is most robust when the context is predictable but not repetitive. Our study demonstrates a robust influence of prior listening context that works to enhance online neural encoding of linguistic pitch patterns. We interpret these results as indicative of an interplay between contextual processes that are responsive to predictability as well as novelty in the presentation context. NEW & NOTEWORTHY Human auditory perception in dynamic listening environments requires fine-tuning of sensory signal based on behaviorally relevant regularities in listening context, i.e., online experience-dependent plasticity. Our finding suggests what partly underlie online experience-dependent plasticity are interplaying contextual processes in the subcortical auditory system that are responsive to predictability as well as novelty in listening context. These findings add to the literature that looks to establish the neurophysiological bases of auditory system plasticity, a central issue in auditory neuroscience.


2013 ◽  
Vol 14 (4) ◽  
pp. 95-101 ◽  
Author(s):  
Robert Kraemer ◽  
Allison Coltisor ◽  
Meesha Kalra ◽  
Megan Martinez ◽  
Bailey Savage ◽  
...  

English language learning (ELL) children suspected of having specific-language impairment (SLI) should be assessed using the same methods as monolingual English-speaking children born and raised in the United States. In an effort to reduce over- and under-identification of ELL children as SLI, speech-language pathologists (SLP) must employ nonbiased assessment practices. This article presents several evidence-based, nonstandarized assessment practices SLPs can implement in place of standardized tools. As the number of ELL children SLPs come in contact with increases, the need for well-trained and knowledgeable SLPs grows. The goal of the authors is to present several well-establish, evidence-based assessment methods for assessing ELL children suspected of SLI.


The Oxford Handbook of the Auditory Brainstem provides an in-depth reference to the organization and function of ascending and descending auditory pathways in the mammalian brainstem. Individual chapters are organized along the auditory pathway, beginning with the cochlea and ending with the auditory midbrain. Each chapter provides an introduction to the respective area and summarizes our current knowledge before discussing the disputes and challenges that the field currently faces.The handbook emphasizes the numerous forms of plasticity that are increasingly observed in many areas of the auditory brainstem. Several chapters focus on neuronal modulation of function and plasticity on the synaptic, neuronal, and circuit level, especially during development, aging, and following peripheral hearing loss. In addition, the book addresses the role of trauma-induced maladaptive plasticity with respect to its contribution in generating central hearing dysfunction, such as hyperacusis and tinnitus.The book is intended for students and postdoctoral fellows starting in the auditory field and for researchers of related fields who wish to get an authoritative and up-to-date summary of the current state of auditory brainstem research. For clinical practitioners in audiology, otolaryngology, and neurology, the book is a valuable resource of information about the neuronal mechanisms that are currently discussed as major candidates for the generation of central hearing dysfunction.


2005 ◽  
Vol 2 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Derrin Pinto

This cross-sectional study in interlanguage pragmatics analyzes the requests employed by English-speaking learners of L2 Spanish, using data collected from university students at four different levels of language learning. The most common request strategies are first identified in a cross-linguistic analysis of Spanish and English and are then compared to the interlanguage data. The requests of lower-level students are found to be more idiosyncratic and pragmatically ambiguous than those of advanced learners, although not necessarily more direct. Advanced learners show signs of improvement, but still rely largely on L1 request behavior. Learners at all levels display more difficulties in areas in which there is cross-linguistic variation between the L1 and L2.


2004 ◽  
Vol 92 (4) ◽  
pp. 2615-2621 ◽  
Author(s):  
Antonio G. Paolini ◽  
Janine C. Clarey ◽  
Karina Needham ◽  
Graeme M. Clark

Within the first processing site of the central auditory pathway, inhibitory neurons (D stellate cells) broadly tuned to tonal frequency project on narrowly tuned, excitatory output neurons (T stellate cells). The latter is thought to provide a topographic representation of sound spectrum, whereas the former is thought to provide lateral inhibition that improves spectral contrast, particularly in noise. In response to pure tones, the overall discharge rate in T stellate cells is unlikely to be suppressed dramatically by D stellate cells because they respond primarily to stimulus onset and provide fast, short-duration inhibition. In vivo intracellular recordings from the ventral cochlear nucleus (VCN) showed that, when tones were presented above or below the characteristic frequency (CF) of a T stellate neuron, they were inhibited during depolarization. This resulted in a delay in the initial action potential produced by T stellate cells. This ability of fast inhibition to alter the first spike timing of a T stellate neuron was confirmed by electrically activating the D stellate cell pathway that arises in the contralateral cochlear nucleus. Delay was also induced when two tones were presented: one at CF and one outside the frequency response area of the T stellate neuron. These findings suggest that the traditional view of lateral inhibition within the VCN should incorporate delay as one of its principle outcomes.


Sign in / Sign up

Export Citation Format

Share Document