scholarly journals Evaluation of Self-generated Behavior: Untangling Metacognitive Readout and Error Detection

2019 ◽  
Vol 31 (11) ◽  
pp. 1641-1657 ◽  
Author(s):  
Tadeusz W. Kononowicz ◽  
Virginie van Wassenhove

When producing a duration, for instance, by pressing a key for 1 sec, the brain relies on self-generated neuronal dynamics to monitor the “flow of time.” Evidence has suggested that the brain can also monitor itself monitoring time, the so-called self-evaluation. How are temporal errors inferred on the basis of purely internally driven brain dynamics with no external reference for time? Although studies have shown that participants can reliably detect temporal errors when generating a duration, the neural bases underlying the evaluation of this self-generated temporal behavior are unknown. Theories of psychological time have also remained silent about such self-evaluation abilities. We assessed the contributions of an error-detection mechanism, in which error detection results from the ability to estimate the latency of motor actions, and of a readout mechanism, in which errors would result from inferring the state of a duration representation. Error detection predicts a V-shape association between neural activity and self-evaluation at the offset of a produced interval, whereas the readout predicts a linear association. Here, human participants generated a time interval and evaluated the magnitude of their timing (first- and second-order behavioral judgments, respectively). Focusing on the MEG/EEG signatures after the termination of the self-generated duration, we found several cortical sources involved in performance monitoring displaying a linear association between the power of alpha (α = 8–14 Hz) oscillations and self-evaluation. Altogether, our results support the readout hypothesis and indicate that duration representation may be integrated for the evaluation of self-generated behavior.

2019 ◽  
Author(s):  
Tadeusz W. Kononowicz ◽  
Virginie van Wassenhove

ABSTRACTWhen producing a duration, for instance by pressing a key for one second, the brain relies on self-generated neuronal dynamics to monitor the “flow of time”. Converging evidence has suggested that the brain can also monitor itself monitoring time. Here, we investigated which brain mechanisms support metacognitive inferences when self-generating timing behavior. Although studies have shown that participants can reliably detect temporal errors when generating a duration (Akdogan & Balci, 2017; Kononowicz et al., 2017), the neural bases underlying the evaluation and the monitoring of this self-generated temporal behavior are unknown. Theories of psychological time have also remained silent about such self-evaluation abilities. How are temporal errors inferred on the basis of purely internally driven brain dynamics without external reference for time? We contrasted the error-detection hypothesis, in which error-detection would result from the comparison of competing motor plans with the read-out hypothesis, in which errors would result from inferring the state of an internal code for motor timing. Human participants generated a time interval, and evaluated the magnitude of their timing (first and second order behavioral judgments, respectively) while being recorded with time-resolved neuroimaging. Focusing on the neural signatures following the termination of self-generated duration, we found several regions involved in performance monitoring, which displayed a linear association between the power of α (8-14 Hz) oscillations, and the duration of the produced interval. Altogether, our results support the read-out hypothesis and indicate that first-order signals may be integrated for the evaluation of self-generated behavior.SIGNIFICANCE STATEMENTWhen typing on a keyboard, the brain estimates where the finger should land, but also when. The endogenous generation of the when in time is naturally accompanied by timing errors which, quite remarkably, participants can accurately rate as being too short or too long, and also by how much. Here, we explored the brain mechanisms supporting such temporal metacognitive inferences. For this, we contrasted two working hypotheses (error-detection vs. read-out), and showed that the pattern of evoked and oscillatory brain activity parsimoniously accounted best for a read-out mechanism. Our results suggest the existence of meta-representations of time estimates.


2018 ◽  
Vol 29 (10) ◽  
pp. 4366-4380 ◽  
Author(s):  
Tadeusz W Kononowicz ◽  
Clémence Roger ◽  
Virginie van Wassenhove

Abstract Metacognition, the ability to know about one’s thought process, is self-referential. Here, we combined psychophysics and time-resolved neuroimaging to explore metacognitive inference on the accuracy of a self-generated behavior. Human participants generated a time interval and evaluated the signed magnitude of their temporal production. We show that both self-generation and self-evaluation relied on the power of beta oscillations (β; 15–40 Hz) with increases in early β power predictive of increases in duration. We characterized the dynamics of β power in a low-dimensional space (β state-space trajectories) as a function of timing and found that the more distinct trajectories, the more accurate metacognitive inferences were. These results suggest that β states instantiate an internal variable determining the fate of the timing network’s trajectory, possibly as release from inhibition. Altogether, our study describes oscillatory mechanisms for timing, suggesting that temporal metacognition relies on inferential processes of self-generated dynamics.


2017 ◽  
Author(s):  
Tadeusz W. Kononowicz ◽  
Clémence Roger ◽  
Virginie van Wassenhove

SUMMARYMetacognition, the ability to know about one’s thought process, is self-referential. Here, we combined psychophysics and time-resolved neuroimaging to explore metacognitive inference on the accuracy of a self-generated behavior. Human participants generated a time interval and evaluated the signed magnitude of their temporal production. We show that both self-generation and self-evaluation relied on the power of beta oscillations (β; 15−40 Hz) with increases in early β power predictive of increases in duration. We characterized the dynamics of β power in a low dimensional space (β state-space trajectories) as a function of timing and found that the more distinct trajectories, the more accurate metacognitive inferences were. These results suggest that β states instantiates an internal variable determining the fate of the timing network’s trajectory, possibly as release from inhibition. Altogether, our study describes oscillatory mechanisms for timing, suggesting that temporal metacognition relies on inferential processes of self-generated dynamics.


Author(s):  
Lívio Pereira de Macêdo ◽  
Arlindo Ugulino Netto ◽  
Kauê Franke ◽  
Pierre Vansant Oliveira Eugenio ◽  
John Anderson da Silva Rocha ◽  
...  

Abstract Introduction The increase in intracranial pressure (ICP) is a neurological complication resulting from numerous pathologies that affect the brain and its compartments. Therefore, decompressive craniectomy (DC) is an alternative adopted to reduce ICP in emergencies, especially in cases refractory to clinical therapies, in favor of patient survival. However, DC is associated with several complications, including hydrocephalus (HC). The present study presents the results of an unusual intervention to this complication: the implantation of an external ventricular drain (EVD) in the intraoperative period of cranioplasty (CP). Methods Patients of both genders who presented with HC and externalization of the brain through the cranial vault after decompressive hemicraniectomy and underwent EVD implantation, to allow the CP procedure, in the same surgical procedure, were included. Results Five patients underwent DC due to a refractory increase in ICP, due to automobile accidents, firearm projectiles, falls from stairs, and ischemic strokes. All evolved with HC. There was no uniform time interval between DC and CP. The cerebrospinal fluid (CSF) was drained according to the need for correction of cerebral herniation in each patient, before undergoing cranioplasty. All patients progressed well, without neurological deficits in the immediate postoperative period. Conclusion There are still several uncertainties about the management of HC resulting from DC. In this context, other CP strategies simultaneous to the drainage of CSF, not necessarily related to ventriculoperitoneal shunt (VPS), should be considered and evaluated more deeply, in view of the verification of efficacy in procedures of this scope, such as the EVD addressed in this study.


2012 ◽  
Vol 23 (12) ◽  
pp. 1455-1460 ◽  
Author(s):  
Lisa Legault ◽  
Timour Al-Khindi ◽  
Michael Inzlicht

Self-affirmation produces large effects: Even a simple reminder of one’s core values reduces defensiveness against threatening information. But how, exactly, does self-affirmation work? We explored this question by examining the impact of self-affirmation on neurophysiological responses to threatening events. We hypothesized that because self-affirmation increases openness to threat and enhances approachability of unfavorable feedback, it should augment attention and emotional receptivity to performance errors. We further hypothesized that this augmentation could be assessed directly, at the level of the brain. We measured self-affirmed and nonaffirmed participants’ electrophysiological responses to making errors on a task. As we anticipated, self-affirmation elicited greater error responsiveness than did nonaffirmation, as indexed by the error-related negativity, a neural signal of error monitoring. Self-affirmed participants also performed better on the task than did nonaffirmed participants. We offer novel brain evidence that self-affirmation increases openness to threat and discuss the role of error detection in the link between self-affirmation and performance.


2011 ◽  
Vol 30 (6) ◽  
pp. E4 ◽  
Author(s):  
Peter T. Kan ◽  
Kenneth V. Snyder ◽  
Parham Yashar ◽  
Adnan H. Siddiqui ◽  
L. Nelson Hopkins ◽  
...  

Computed tomography perfusion scanning generates physiological flow parameters of the brain parenchyma, allowing differentiation of ischemic penumbra and core infarct. Perfusion maps, along with the National Institutes of Health Stroke Scale score, are used as the bases for endovascular stroke intervention at the authors' institute, regardless of the time interval from stroke onset. With case examples, the authors illustrate their perfusion-based imaging guidelines in patient selection for endovascular treatment in the setting of acute stroke.


2017 ◽  
Vol 37 (10) ◽  
pp. 3401-3408 ◽  
Author(s):  
Shi Shu ◽  
Li Zhang ◽  
Yi Cheng Zhu ◽  
Fang Li ◽  
Li Ying Cui ◽  
...  

Angiogenesis is a critical compensation route, which has been demonstrated in the brain following ischemic stroke; however, few studies have investigated angiogenesis in chronic intracranial atherosclerosis disease (ICAD). We used 68Ga-NOTA-PRGD2 positron emission tomography/computed tomography based imaging to detect angiogenesis in chronic ICAD and to explore the factors that may have affected it. A total of 21 participants with unilateral severe chronic ICAD were included in the study. Of the 21 participants, 19 were men; the mean (SD) age was 52 (15) years. In 18 participants, we observed elevated 68Ga-NOTA-PRGD2 uptake in the peri-infarct, subcortical, and periventricular regions of the lesioned side, with a higher 68Ga-NOTA-PRGD2 SUVmax compared to that in the contralateral hemisphere (0.15 vs. 0.06, p=0.001). The 18F-FDG PET SUVmax was significantly lower on the lesioned side (11.28 vs. 13.92, p=0.001). Subgroup analyses revealed that the recent group (<6 months) had a higher lesion-to-contralateral region ratio SUVmax than the remote group (>6 months) (6.73 vs. 2.36, p<0.05). Our results provide molecular imaging evidence of angiogenesis in patients with severe chronic ICAD. Furthermore, the extent of angiogenesis in chronic ICAD may be affected by the post-qualified event time interval, and not by infarction itself or the severity of the arterial lesion.


1937 ◽  
Vol 65 (5) ◽  
pp. 735-755 ◽  
Author(s):  
L. A. Julianelle ◽  
R. W. Harrison ◽  
M. C. Morris

1. The infectious agent of trachoma can be freed from extraneous bacteria by passage through rabbit testicle. 2. The infectious agent multiplies little, if at all, during such passage, but in many instances retains its infectivity undiminished. 3. No specific changes occur in the rabbit testicle incidentally to the passage. 4. On rare occasion the trachoma agent may be freed from bacteria by intracerebral passage. The brain tissues show no specific reaction. 5. Filtration experiments with Seitz, Kramer, Berkefeld, and Elford filters confirm the general observation that the infectious agent is filterable with difficulty. 6. Tissue culture experiments, with tissues containing the infectious agent (conjunctiva, rabbit testicle, brain, etc.), conducted under a wide variety of conditions, proved uniformly unsuccessful in the cultivation of the agent. 7. The agent is inactivated by bile, AgNO3, phenol, cocaine, tartar emetic, and gentian violet. Its heat inactivation temperature is between 45° and 50°C., at a time interval of 15 minutes. 8. Attempts to preserve the infectious agent in glycerine were unsuccessful. 9. The accumulated evidence suggests that the infectious agent of trachoma is a virus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helen Feigin ◽  
Shira Baror ◽  
Moshe Bar ◽  
Adam Zaidel

AbstractPerceptual decisions are biased by recent perceptual history—a phenomenon termed 'serial dependence.' Here, we investigated what aspects of perceptual decisions lead to serial dependence, and disambiguated the influences of low-level sensory information, prior choices and motor actions. Participants discriminated whether a brief visual stimulus lay to left/right of the screen center. Following a series of biased ‘prior’ location discriminations, subsequent ‘test’ location discriminations were biased toward the prior choices, even when these were reported via different motor actions (using different keys), and when the prior and test stimuli differed in color. By contrast, prior discriminations about an irrelevant stimulus feature (color) did not substantially influence subsequent location discriminations, even though these were reported via the same motor actions. Additionally, when color (not location) was discriminated, a bias in prior stimulus locations no longer influenced subsequent location discriminations. Although low-level stimuli and motor actions did not trigger serial-dependence on their own, similarity of these features across discriminations boosted the effect. These findings suggest that relevance across perceptual decisions is a key factor for serial dependence. Accordingly, serial dependence likely reflects a high-level mechanism by which the brain predicts and interprets new incoming sensory information in accordance with relevant prior choices.


Cortex ◽  
2005 ◽  
Vol 41 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Mario Liotti ◽  
Steven R. Pliszka ◽  
Ricardo Perez ◽  
Delia Kothmann ◽  
Marty G. Woldorff

Sign in / Sign up

Export Citation Format

Share Document