Differential Developmental Associations of Material Hardship Exposure and Adolescent Amygdala–Prefrontal Cortex White Matter Connectivity

2021 ◽  
pp. 1-26
Author(s):  
Felicia A. Hardi ◽  
Leigh G. Goetschius ◽  
Melissa K. Peckins ◽  
Jeanne Brooks-Gunn ◽  
Sara S. McLanahan ◽  
...  

Abstract Accumulating literature has linked poverty to brain structure and function, particularly in affective neural regions; however, few studies have examined associations with structural connections or the importance of developmental timing of exposure. Moreover, prior neuroimaging studies have not used a proximal measure of poverty (i.e., material hardship, which assesses food, housing, and medical insecurity) to capture the lived experience of growing up in harsh economic conditions. The present investigation addressed these gaps collectively by examining the associations between material hardship (ages 1, 3, 5, 9, and 15 years) and white matter connectivity of frontolimbic structures (age of 15 years) in a low-income sample. We applied probabilistic tractography to diffusion imaging data collected from 194 adolescents. Results showed that material hardship related to amygdala–prefrontal, but not hippocampus–prefrontal or hippocampus–amygdala, white matter connectivity. Specifically, hardship during middle childhood (ages 5 and 9 years) was associated with greater connectivity between the amygdala and dorsomedial pFC, whereas hardship during adolescence (age of 15 years) was related to reduced amygdala–orbitofrontal (OFC) and greater amygdala–subgenual ACC connectivity. Growth curve analyses showed that greater increases of hardship across time were associated with both greater (amygdala–subgenual ACC) and reduced (amygdala–OFC) white matter connectivity. Furthermore, these effects remained above and beyond other types of adversity, and greater hardship and decreased amygdala–OFC connectivity were related to increased anxiety and depressive symptoms. Results demonstrate that the associations between material hardship and white matter connections differ across key prefrontal regions and developmental periods, providing support for potential windows of plasticity for structural circuits that support emotion processing.

2017 ◽  
Author(s):  
Birkan Tunç ◽  
Drew Parker ◽  
Russell T. Shinohara ◽  
Mark A. Elliott ◽  
Kosha Ruparel ◽  
...  

AbstractStudying developmental changes in white matter connectivity is critical for understanding neurobiological substrates of cognition, learning, and neuropsychiatric disorders. This becomes especially important during adolescence when a rapid expansion of the behavioral repertoire occurs. Several factors such as brain geometry, genetic expression profiles, and higher level architectural specifications such as the presence of segregated modules have been associated with the observed organization of white matter connections. However, we lack understanding of the extent to which such factors jointly describe the brain network organization, nor have insights into how their contribution changes developmentally. We constructed a multifactorial model of white matter connectivity using Bayesian network analysis and tested it with diffusion imaging data from a large community sample. We investigated contributions of multiple factors in explaining observed connectivity, including architectural specifications, which promote a modular yet integrative organization, and brain’s geometric and genetic features. Our results demonstrated that the initially dominant geometric and genetic factors become less influential with age, whereas the effect of architectural specifications increases. The identified structural modules are associated with well-known functional systems, and the level of association increases with age. This integrative analysis provides a computational characterization of the normative evolution of structural connectivity during adolescence.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


2021 ◽  
Author(s):  
Christienne G Damatac ◽  
Sourena Soheili-Nezhad ◽  
Guilherme Blazquez Freches ◽  
Marcel P Zwiers ◽  
Sanne de Bruijn ◽  
...  

Background: Variation in the longitudinal course of childhood attention deficit/hyperactivity disorder (ADHD) coincides with neurodevelopmental maturation of brain structure and function. Prior work has attempted to determine how alterations in white matter (WM) relate to changes in symptom severity, but much of that work has been done in smaller cross-sectional samples using voxel-based analyses. Using standard diffusion-weighted imaging (DWI) methods, we previously showed WM alterations were associated with ADHD symptom remission over time in a longitudinal sample of probands, siblings, and unaffected individuals. Here, we extend this work by further assessing the nature of these changes in WM microstructure by including an additional follow-up measurement (aged 18-34 years), and using the more physiologically informative fixel-based analysis (FBA). Methods: Data were obtained from 139 participants over 3 clinical and 2 follow-up DWI waves, and analyzed using FBA in regions-of-interest based on prior findings. We replicated previously reported significant models and extended them by adding another time-point, testing whether changes in combined and hyperactivity-impulsivity (HI) continuous symptom scores are associated with fixel metrics at follow-up. Results: Clinical improvement in HI symptoms over time was associated with more fiber density at follow-up in the left corticospinal tract (lCST) (tmax=1.092, standardized effect[SE]=0.044, pFWE=0.016), and improvement in combined symptoms over time was associated with more fiber cross-section at follow-up in the lCST (tmax=3.775, SE=0.051, pFWE=0.019). Conclusions: Aberrant white matter development involves both lCST micro- and macrostructural alterations and its path may be moderated by preceding symptom trajectory.


Author(s):  
Deanna M. Barch ◽  
David Pagliaccio

This chapter reviews associations between early life stress and brain structure and function as assessed by structural and functional magnetic resonance imaging. Particularly, this chapter focuses on structural associations in children and adults and the regional overlap with neural alterations observed in major depressive disorder, though we also more briefly cover diffusion imaging, task-based imaging, and resting-state functional connectivity. Major depressive disorder is highlighted given that early life stress is a critical risk factor for depression and the neural alterations observed with stress and depression may serve as key mediating factors of this association. A brief methodological overview is provided for each neuroimaging domain as well as a discussion of limitations and future directions for this field.


2016 ◽  
Vol 22 (2) ◽  
pp. 180-190 ◽  
Author(s):  
Ashley Unger ◽  
Kylie H. Alm ◽  
Jessica A. Collins ◽  
Jacquelyn M. O’Leary ◽  
Ingrid R. Olson

AbstractObjectives: The extended face network contains clusters of neurons that perform distinct functions on facial stimuli. Regions in the posterior ventral visual stream appear to perform basic perceptual functions on faces, while more anterior regions, such as the ventral anterior temporal lobe and amygdala, function to link mnemonic and affective information to faces. Anterior and posterior regions are interconnected by a long-range white matter tracts; however, it is not known if variation in connectivity of these pathways explains cognitive performance. Methods: Here, we used diffusion imaging and deterministic tractography in a cohort of 28 neurologically normal adults ages 18–28 to examine microstructural properties of visual fiber pathways and their relationship to certain mnemonic and affective functions involved in face processing. We investigated how inter-individual variability in two tracts, the inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF), related to performance on tests of facial emotion recognition and face memory. Results: Results revealed that microstructure of both tracts predicted variability in behavioral performance indexed by both tasks, suggesting that the ILF and IFOF play a role in facilitating our ability to discriminate emotional expressions in faces, as well as to remember unique faces. Variation in a control tract, the uncinate fasciculus, did not predict performance on these tasks. Conclusions: These results corroborate and extend the findings of previous neuropsychology studies investigating the effects of damage to the ILF and IFOF, and demonstrate that differences in face processing abilities are related to white matter microstructure, even in healthy individuals. (JINS, 2016, 22, 180–190)


Biostatistics ◽  
2019 ◽  
Author(s):  
Benjamin B Risk ◽  
Hongtu Zhu

SUMMARY It is of great interest to quantify the contributions of genetic variation to brain structure and function, which are usually measured by high-dimensional imaging data (e.g., magnetic resonance imaging). In addition to the variance, the covariance patterns in the genetic effects of a functional phenotype are of biological importance, and covariance patterns have been linked to psychiatric disorders. The aim of this article is to develop a scalable method to estimate heritability and the nonstationary covariance components in high-dimensional imaging data from twin studies. Our motivating example is from the Human Connectome Project (HCP). Several major big-data challenges arise from estimating the genetic and environmental covariance functions of functional phenotypes extracted from imaging data, such as cortical thickness with 60 000 vertices. Notably, truncating to positive eigenvalues and their eigenfunctions from unconstrained estimators can result in large bias. This motivated our development of a novel estimator ensuring positive semidefiniteness. Simulation studies demonstrate large improvements over existing approaches, both with respect to heritability estimates and covariance estimation. We applied the proposed method to cortical thickness data from the HCP. Our analysis suggests fine-scale differences in covariance patterns, identifying locations in which genetic control is correlated with large areas of the brain and locations where it is highly localized.


NeuroImage ◽  
2015 ◽  
Vol 120 ◽  
pp. 43-54 ◽  
Author(s):  
Javier Arnedo ◽  
Daniel Mamah ◽  
David A. Baranger ◽  
Michael P. Harms ◽  
Deanna M. Barch ◽  
...  

2020 ◽  
Author(s):  
Naiara Demnitz ◽  
Melis Anatürk ◽  
Charlotte L Allan ◽  
Nicola Filippini ◽  
Ludovica Griffanti ◽  
...  

Background: Trajectories of depressive symptoms over the lifespan vary between people, but it is unclear whether these differences exhibit distinct characteristics in brain structure and function. Methods: In order to compare indices of white matter microstructure and cognitive characteristics of groups with different trajectories of depressive symptoms, we examined 774 participants of the Whitehall II Imaging Sub-study, who had completed the depressive subscale of the General Health Questionnaire up to nine times over 25 years. Twenty-seven years after the first examination, participants underwent magnetic resonance imaging to characterize white matter hyperintensities (WMH) and microstructure and completed neuropsychological tests to assess cognition. Twenty-nine years after the first examination, participants completed a further cognitive screening test. Results: Using K-means cluster modelling, we identified five trajectory groups of depressive symptoms: consistently low scorers ("low"; n=505, 62.5%), a subgroup with an early peak in depression scores ("early"; n=123, 15.9%), intermediate scorers ("middle"; n=89, 11.5%), a late symptom subgroup with an increase in symptoms towards the end of the follow-up period ("late"; n=29, 3.7%), and consistently high scorers ("high"; n=28, 3.6%). The late, but not the consistently high scorers, showed higher mean diffusivity, larger volumes of WMH and impaired executive function. In addition, the late subgroup had higher Framingham Stroke Risk scores throughout the follow-up period, indicating a higher load of vascular risk factors. Conclusions: Our findings suggest that tracking depressive symptoms in the community over time may be a useful tool to identify phenotypes that show different etiologies and cognitive and brain outcomes.


2017 ◽  
Author(s):  
Stuart J. Ritchie ◽  
Simon R. Cox ◽  
Xueyi Shen ◽  
Michael V. Lombardo ◽  
Lianne M. Reus ◽  
...  

AbstractSex differences in the human brain are of interest, for example because of sex differences in the observed prevalence of psychiatric disorders and in some psychological traits. We report the largest single-sample study of structural and functional sex differences in the human brain (2,750 female, 2,466 male participants; 44-77 years). Males had higher volumes, surface areas, and white matter fractional anisotropy; females had thicker cortices and higher white matter tract complexity. There was considerable distributional overlap between the sexes. Subregional differences were not fully attributable to differences in total volume or height. There was generally greater male variance across structural measures. Functional connectome organization showed stronger connectivity for males in unimodal sensorimotor cortices, and stronger connectivity for females in the default mode network. This large-scale study provides a foundation for attempts to understand the causes and consequences of sex differences in adult brain structure and function.


Hypertension ◽  
2020 ◽  
Vol 75 (5) ◽  
pp. 1289-1295
Author(s):  
Lisanne M. Jenkins ◽  
Chaney R. Garner ◽  
Shawn Kurian ◽  
James P. Higgins ◽  
Todd B. Parrish ◽  
...  

High blood pressure (BP) negatively affects brain structure and function. Hypertension is associated with white matter hyperintensities, cognitive and mobility impairment in late-life. However, the impact of BP exposure from young adulthood on brain structure and function in mid-life is unclear. Identifying early brain structural changes associated with BP exposure, before clinical onset of cognitive dysfunction and mobility impairment, is essential for understanding mechanisms and developing interventions. We examined the effect of cumulative BP exposure from young adulthood on brain structure in a substudy of 144 (61 female) individuals from the CARDIA (Coronary Artery Risk Development in Young Adults) study. At year 30 (Y 30 , ninth visit), participants (56±4 years old) completed brain magnetic resonance imaging and gait measures (pace, rhythm, and postural control). Cumulative systolic and diastolic BP (cumulative systolic blood pressure, cDBP) over 9 visits were calculated, multiplying mean values between 2 consecutive visits by years between visits. Surface-based analysis of basal ganglia and thalamus was achieved using FreeSurfer-initiated Large Deformation Diffeomorphic Metric Mapping. Morphometric changes were regressed onto cumulative BP to localize regions of shape variation. Y 30 white matter hyperintensity volumes were small and positively correlated with cumulative BP but not gait. Negative morphometric associations with cumulative systolic blood pressure were seen in the caudate, putamen, nucleus accumbens, pallidum, and thalamus. A concave right medial putamen shape mediated the relationship between cumulative systolic blood pressure and stride width. Basal ganglia and thalamic morphometric changes, rather than volumes, may be earlier manifestation of gray matter structural signatures of BP exposure that impact midlife gait.


Sign in / Sign up

Export Citation Format

Share Document