Generalization and Analysis of the Lisberger-Sejnowski VOR Model

1995 ◽  
Vol 7 (4) ◽  
pp. 735-752 ◽  
Author(s):  
Ning Qian

Lisberger and Sejnowski (1992) recently proposed a computational model for motor learning in the vestibular-ocular reflex (VOR) system. They showed that the steady-state gain of the system can be modified by changing the ratio of the two time constants along the feedforward and the feedback projections to the Purkinje cell unit in their model VOR network. Here we generalize their model by including two additional time constant variables and two synaptic weight variables, which were set to fixed values in their original model. We derive the stability conditions of the generalized system and thoroughly analyze its steady-state and transient behavior. It is found that the generalized system can display a continuum of behavior with the Lisberger-Sejnowski model and a static model proposed by Miles et al. (1980b) as special cases. Moreover, although mathematically the Lisberger-Sejnowski model requires two precise relationships among its parameters, the model is robust against small perturbations from the physiological point of view. Additional considerations on the gain of smooth pursuit eye movement, which is believed to share the positive feedback loop with the VOR network, suggest that the VOR network should operate in the parameter range favoring the behavior studied by Lisberger and Sejnowski. Under this condition, the steady-state gain of the VOR is found to depend on all four time constants in the network. The time constant of the Purkinje cell unit should be relatively small in order to achieve effective VOR learning through the modifications of the other time constants. Our analysis provides a thorough characterization of the system and could thus be useful for guiding further physiological tests of the model.

1887 ◽  
Vol 42 (251-257) ◽  
pp. 289-296 ◽  

The time-constant for currents of any normal type in a given conductor is the time in which free currents of that type fall to 1/ e of their original strength. In strictness there are for any conductor an infinite series of time-constants, corresponding to the various normal types, but in such a case as that of a coil of wire one of these is very great in comparison with the rest, which belong to types in which the current is in opposite directions in different parts of a section of the wire. And in all cases the time-constant corresponding to the most persistent type which can be present under given circumstances is, of course, the one which is most important from an experimental point of view.


1990 ◽  
Vol 63 (5) ◽  
pp. 1046-1051 ◽  
Author(s):  
M. Kaneda ◽  
M. Wakamori ◽  
C. Ito ◽  
N. Akaike

1. The low- and high-threshold Ca2+ currents were observed in Purkinje cell bodies isolated from the cerebellum of newborn (2 wk old) and adult (8 wk old) rats under whole-cell clamp. A transient Ca2+ current (low-threshold or "T-type" ICa) was elicited by depolarizing step pulses to -60 mV or more positive potentials from a holding potential (VH) of -100 mV. In cells dissociated from newborn rats, a long-lasting Ca2+ current (high-threshold or "L-type" ICa) was also elicited by depolarizing command pulses beyond -30 mV. 2. The low-threshold ICa was resistant to the "washout" effect during the internal perfusion, whereas the high-threshold ICa faded gradually with time during the continuous internal perfusion. 3. In the current-voltage (I-V) relationship, the low-threshold ICa had a threshold potential around -60 mV and reached the maximum inward current around -20 mV. The activation and inactivation kinetics of the current depended on membrane potential: for a test-potential change from -60 to +40 mV, the time to peak of the current (activation) decreased from 31.9 to 5.0 ms, and the time constant of current decay (inactivation) decreased from 78.5 to 22.9 ms. 4. Steady-state inactivation of low-threshold ICa was membrane-potential dependent, and the inactivation of the 50% level was -79 mV. Recovery time constant from steady-state inactivation varied depending on the membrane potential. The time constants were 3.3 and 2.5 s at VHs of -100 and -120 mV, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 556-557 ◽  
pp. 847-850 ◽  
Author(s):  
Siddharth Potbhare ◽  
Neil Goldsman ◽  
Gary Pennington ◽  
Aivars J. Lelis ◽  
J.M. McGarrity

SiC MOSFETs have very large interface trap densities which degrade device performance. The effect of traps on inversion layer mobility and inversion charge concentration has been studied, and mobility models suitable for inclusion in Drift-Diffusion simulators have been developed for steady state operation of SiC MOSFET devices. Here, we attempt to model the transient behavior of SiC MOSFETs, and at the same time, extract the time constants for the filling and emptying of interface traps. As compared to the inversion layer, interface traps in SiC MOSFETs are slow in reacting to change in gate bias. So, at the positive edge of a gate pulse, we see a large current in the MOSFET, which then decays slowly to the steady state value as the interface traps fill up. We have developed a generation/recombination model for minority carriers in a SiC MOSFET based on the Shockley-Read-Hall recombination model for electrons and holes. In our model, the generation/recombination takes place between minority carriers in the inversion layer, and the traps at the SiC-SiO2 interface. Comparing our simulated current vs. time curves to experiment, we have been able to extract time constants for the filling and emptying of traps at the SiC-SiO2 interface.


2009 ◽  
Vol 1166 ◽  
Author(s):  
Ezzahri Younes ◽  
James Christofferson ◽  
Kerry Maize ◽  
Ali Shakouri

AbstractWe use a Thermoreflectance Thermal Imaging technique to study the transient cooling of SiGe-based microrefrigerators. Thermal imaging with submicron spatial resolution, 0.1C temperature resolution and 100 nanosecond temporal resolution is achieved. Transient temperature profiles of SiGe-based superlattice microrefrigerator devices of different sizes are obtained. The dynamic behavior of these microrefrigerators, show an interplay between Peltier and Joule effects. On the top surface of the device, Peltier cooling appears first with a time constant of about 10-30 microseconds, then Joule heating in the device starts taking over with a time constant of about 100-150 microseconds. The experimental results agree very well with the theoretical predictions based on Thermal Quadrupoles Method. The difference in the two time constants can be explained considering the thermal resistance and capacitance of the thin film. In addition this shows that the Joule heating at the top metal/semiconductor interface does not dominate the microrefrigerator performance or else we would have obtained the same time constants for the Peltier and Joule effects. Experimental results show that under high current values, pulse-operation the microrefrigerator device can provide cooling for about 30 microseconds, even though steady state measurements show heating. Temperature distribution on the metal leads connected to the microrefrigerator’s cold junction show the interplay between Joule heating in the metal as well as heat conduction to the substrate. Modeling is used to study the effect of different physical and geometrical parameters of the device on its transient cooling. 3D geometry of heat and current flow in the device plays an important role. One of the goals is to maximize cooling over the shortest time scales.


2014 ◽  
Vol 3 (1) ◽  
pp. 55-60
Author(s):  
P. Sharma ◽  
N. Murali ◽  
T. Jayakumar

Abstract. Knowledge of temperature fluctuations in fast reactor subassembly is very important from a safety point of view. The time constant of thermocouples which are used for measuring coolant temperature in a fast reactor varies owing to various factors. Hence, it becomes necessary to investigate the effect of change in the time constant on sensed fluctuations. This paper investigates the dependence of temperature fluctuations on thermocouple time constants. A Scilab model consisting of source temperature profile, second-order thermocouple and histogram calculation is designed. Simulation is performed for various levels of fluctuations, fixed and variable thermocouple time constants. Kurtosis for each condition is calculated with the help of a histogram. It is found that the effect of true source fluctuations on sensor output is very large compared to that of a similar percentage of time-constant variations. Hence in systems like fast reactors, where the degree of source fluctuations (fluid enthalpy) is large in comparison to that of time-constant variations, the overall effect can be considered with great confidence to be the outcome of coolant temperature rather than thermocouple time-constant variations.


Author(s):  
Tugrul Irmak ◽  
Ksander N. de Winkel ◽  
Daan M. Pool ◽  
Heinrich H. Bülthoff ◽  
Riender Happee

AbstractPrevious literature suggests a relationship between individual characteristics of motion perception and the peak frequency of motion sickness sensitivity. Here, we used well-established paradigms to relate motion perception and motion sickness on an individual level. We recruited 23 participants to complete a two-part experiment. In the first part, we determined individual velocity storage time constants from perceived rotation in response to Earth Vertical Axis Rotation (EVAR) and subjective vertical time constants from perceived tilt in response to centrifugation. The cross-over frequency for resolution of the gravito-inertial ambiguity was derived from our data using the Multi Sensory Observer Model (MSOM). In the second part of the experiment, we determined individual motion sickness frequency responses. Participants were exposed to 30-minute sinusoidal fore-aft motions at frequencies of 0.15, 0.2, 0.3, 0.4 and 0.5 Hz, with a peak amplitude of 2 m/s2 in five separate sessions, approximately 1 week apart. Sickness responses were recorded using both the MIsery SCale (MISC) with 30 s intervals, and the Motion Sickness Assessment Questionnaire (MSAQ) at the end of the motion exposure. The average velocity storage and subjective vertical time constants were 17.2 s (STD = 6.8 s) and 9.2 s (STD = 7.17 s). The average cross-over frequency was 0.21 Hz (STD = 0.10 Hz). At the group level, there was no significant effect of frequency on motion sickness. However, considerable individual variability was observed in frequency sensitivities, with some participants being particularly sensitive to the lowest frequencies, whereas others were most sensitive to intermediate or higher frequencies. The frequency of peak sensitivity did not correlate with the velocity storage time constant (r = 0.32, p = 0.26) or the subjective vertical time constant (r = − 0.37, p = 0.29). Our prediction of a significant correlation between cross-over frequency and frequency sensitivity was not confirmed (r = 0.26, p = 0.44). However, we did observe a strong positive correlation between the subjective vertical time constant and general motion sickness sensitivity (r = 0.74, p = 0.0006). We conclude that frequency sensitivity is best considered a property unique to the individual. This has important consequences for existing models of motion sickness, which were fitted to group averaged sensitivities. The correlation between the subjective vertical time constant and motion sickness sensitivity supports the importance of verticality perception during exposure to translational sickness stimuli.


Neurosurgery ◽  
1985 ◽  
Vol 16 (3) ◽  
pp. 336-340 ◽  
Author(s):  
Michael Kosteljanetz

Abstract Two methods for the determination of resistance to the outflow of cerebrospinal fluid, the bolus injection technique and the constant rate steady state infusion technique, were compared. Thirty-two patients with a variety of intracranial diseases (usually communicating hydrocephalus) were studied. There was a high degree of correlation between the resistance values obtained with the two methods, but values based on the bolus injection technique were systematically and statistically significantly lower than those obtained with the constant rate infusion test. From a practical point of view. both methods were found to be applicable in a clinical setting.


1985 ◽  
Vol 22 (4) ◽  
pp. 766-775
Author(s):  
Norbert Herrndorf

We consider first-passage percolation in an infinite horizontal strip of finite height. Using methods from the theory of Markov chains, we prove a central limit theorem for first-passage times, and compute the time constants for some special cases.


1963 ◽  
Vol 18 (4) ◽  
pp. 446-453 ◽  
Author(s):  
Asbjørn Kildal

The present paper is essentially devoted to the study of instabilities of electrostatic waves in a current-carrying collisionless plasma. As the underlying physical cause of the instabilities is the same as that of the LANDAU damping in an electron plasma, a detailed analysis of the latter is first given. It is shown that the damping may be considered as being due to the fact that there are more electrons in the phase-region where energy is absorbed by the particles from the field than in the phase-region where energy is given up to the field.We then proceed to the evaluation of the energy absorption A of the resonant particles, first in the absence of an external magnet field, B0 , next when the wave is propagated under an arbitrary angle with respect to B0 . When A > 0, the wave is damped, and vice-versa. Without appeal to a dispersion equation, stability criteria can thus be found, dependent on the wave frequency and wave-vector. Next some special cases are investigated and compared with the results of other authors where such results exist.As a consequence of the fact that some ions and electrons, the resonant particles, experience a constant electric field, these particles also experience a constant drift transverse to both E and B0. This drift gives rise to a transverse current which is closely related to the damping or growing of the wave. An expression for this current, averaged over one wave-length is found.


1995 ◽  
Vol 73 (10) ◽  
pp. 1475-1484 ◽  
Author(s):  
Hideaki Sada ◽  
Takashi Ban ◽  
Takeshi Fujita ◽  
Yoshio Ebina ◽  
Nicholas Sperelakis

To assess developmental changes in kinetic properties of the cardiac sodium current, whole-cell voltage-clamp experiments were conducted using 3-, 10-, and 17-day-old embryonic chick ventricular heart cells. Experimental data were quantified according to the Hodgkin–Huxley model. While the Na current density, as examined by the maximal conductance, drastically increased (six- to seven-fold) with development, other current–voltage parameters remained unchanged. Whereas the activation time constant and the steady-state activation characteristics were comparable among the three age groups, the voltage dependence of the inactivation time constant and the steady-state inactivation underwent a shift in the voltage dependence toward negative potentials during embryonic development. Consequently, the steady-state (window current) conductance, which was sufficient to induce automatic activity in the young embryos, was progressively reduced with age.Key words: cardiac electrophysiology, whole-cell voltage-clamp experiments, fast Na currents, heart, development, developmental changes.


Sign in / Sign up

Export Citation Format

Share Document