Fragility in Dynamic Networks: Application to Neural Networks in the Epileptic Cortex

2014 ◽  
Vol 26 (10) ◽  
pp. 2294-2327 ◽  
Author(s):  
Duluxan Sritharan ◽  
Sridevi V. Sarma

Epilepsy is a network phenomenon characterized by atypical activity at the neuronal and population levels during seizures, including tonic spiking, increased heterogeneity in spiking rates, and synchronization. The etiology of epilepsy is unclear, but a common theme among proposed mechanisms is that structural connectivity between neurons is altered. It is hypothesized that epilepsy arises not from random changes in connectivity, but from specific structural changes to the most fragile nodes or neurons in the network. In this letter, the minimum energy perturbation on functional connectivity required to destabilize linear networks is derived. Perturbation results are then applied to a probabilistic nonlinear neural network model that operates at a stable fixed point. That is, if a small stimulus is applied to the network, the activation probabilities of each neuron respond transiently but eventually recover to their baseline values. When the perturbed network is destabilized, the activation probabilities shift to larger or smaller values or oscillate when a small stimulus is applied. Finally, the structural modifications to the neural network that achieve the functional perturbation are derived. Simulations of the unperturbed and perturbed networks qualitatively reflect neuronal activity observed in epilepsy patients, suggesting that the changes in network dynamics due to destabilizing perturbations, including the emergence of an unstable manifold or a stable limit cycle, may be indicative of neuronal or population dynamics during seizure. That is, the epileptic cortex is always on the brink of instability and minute changes in the synaptic weights associated with the most fragile node can suddenly destabilize the network to cause seizures. Finally, the theory developed here and its interpretation of epileptic networks enables the design of a straightforward feedback controller that first detects when the network has destabilized and then applies linear state feedback control to steer the network back to its stable state.

2021 ◽  
Vol 24 (4) ◽  
pp. 382-390
Author(s):  
Roshmi Das ◽  
Ashis Kumar Sarkar

We have proposed here two deterministic models of Jatropha Curcas plant and Whitefly that simulate the dynamics of interaction between them where the distribution of Whitefly on plant follows Poisson distribution.In the first model growth rate of the plant is assumed to be in logistic form whereas in the second model it is taken as exponential form. The attack pattern and the growth of the whitefly are assumed as Holling type II function.The first model results a globally stable state and in the second one we find a globally attracting steady state for some parameter values,and a stable limit cycle for some other parameter values. It is also shown that there exist Hopf bifurcation with respect to some parameter values. The paper also discusses the question about persistence and permanence of the model. It is found that the specific growth rate of both the population and attack pattern of the whitefly governs the dynamics of both the models.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5271-5293
Author(s):  
A.K. Pal ◽  
P. Dolai ◽  
G.P. Samanta

In this paper we have studied the dynamical behaviours of a delayed two-species competitive system affected by toxicant with imprecise biological parameters. We have proposed a method to handle these imprecise parameters by using parametric form of interval numbers. We have discussed the existence of various equilibrium points and stability of the system at these equilibrium points. In case of toxic stimulatory system, the delay model exhibits a stable limit cycle oscillation. Computer simulations are carried out to illustrate our analytical findings.


Author(s):  
Abdulghafoor Jasim Salim ◽  
Kais Ismail Ebrahem ◽  
Suhirman

Abstract: In this paper we study the stability of one of a non linear autoregressive model with trigonometric term  by using local linearization method proposed by Tuhro Ozaki .We find the singular point ,the stability of the singular point and the limit cycle. We conclude  that the proposed model under certain conditions have a non-zero singular point which is  a asymptotically salable ( when  0 ) and have an  orbitaly stable limit cycle . Also we give some examples in order to explain the method. Key Words : Non-linear Autoregressive model; Limit cycle; singular point; Stability.


2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Pierre Auger ◽  
Abderrahim El Abdllaoui ◽  
Rachid Mchich

International audience We present the method of aggregation of variables in the case of ordinary differential equations. We apply the method to a prey - predator model in a multi - patchy environment. In this model, preys can go to a refuge and therefore escape to predation. The predator must return regularly to his terrier to feed his progeny. We study the effect of density-dependent migration on the global stability of the prey-predator system. We consider constant migration rates, but also density-dependent migration rates. We prove that the positif equilibrium is globally asymptotically stable in the first case, and that its stability changes in the second case. The fact that we consider density-dependent migration rates leads to the existence of a stable limit cycle via a Hopf bifurcation. Nous présentons les grandes lignes de laméthode d'agrégation des variables dans les systèmes d'équations différentielles ordinaires. Nous appliquons laméthode à un modèle proie-prédateur spatialisé. Dans ce modèle, les proies peuvent échapper à la prédation en se réfugiant sur un site. Le prédateur doit aussi retourner régulièrement dans son terrier pour nourrir sa progéniture. Nous étudions les effets de migration dépendant de la densité des populations sur la stabilité globale du système proie-prédateur. Nous considérons des taux de migration constants, puis densité-dépendants. Dans le cas de taux constants il existe un équilibre positif toujours stable alors que dans le cas de taux de migration densité-dépendants, il existe un cycle limite stable via une bifurcation de Hopf.


2016 ◽  
Vol 26 (02) ◽  
pp. 1650034 ◽  
Author(s):  
Jicai Huang ◽  
Xiaojing Xia ◽  
Xinan Zhang ◽  
Shigui Ruan

It was shown in [Li & Xiao, 2007] that in a predator–prey model of Leslie type with simplified Holling type IV functional response some complex bifurcations can occur simultaneously for some values of parameters, such as codimension 1 subcritical Hopf bifurcation and codimension 2 Bogdanov–Takens bifurcation. In this paper, we show that for the same model there exists a unique degenerate positive equilibrium which is a degenerate Bogdanov–Takens singularity (focus case) of codimension 3 for other values of parameters. We prove that the model exhibits degenerate focus type Bogdanov–Takens bifurcation of codimension 3 around the unique degenerate positive equilibrium. Numerical simulations, including the coexistence of three hyperbolic positive equilibria, two limit cycles, bistability states (one stable equilibrium and one stable limit cycle, or two stable equilibria), tristability states (two stable equilibria and one stable limit cycle), a stable limit cycle enclosing a homoclinic loop, a homoclinic loop enclosing an unstable limit cycle, or a stable limit cycle enclosing three unstable hyperbolic positive equilibria for various parameter values, confirm the theoretical results.


In this series of papers we re-examine, using recently developed techniques, some chemical kinetic models that have appeared in the literature with a view to obtaining a complete description of all the qualitatively distinct behaviour that the system can exhibit. Each of the schemes is describable by two coupled ordinary differential equations and contain at most three independent parameters. We find that even with these relatively simple chemical schemes there are regions of parameter space in which the systems display behaviour not previously found. Quite often these regions are small and it seems unlikely that they would be found via classical methods. In part I of the series we consider one of the thermally coupled kinetic oscillator models studied by Sal’nikov. He showed that there is a region in parameter space in which the system would be in a state of undamped oscillations because the relevant phase portrait consists of an unstable steady state surrounded by a stable limit cycle. Our analysis has revealed two further regions in which the phase portraits contain, respectively, two limit cycles of opposite stability enclosing a stable steady state and three limit cycles of alternating stability surrounding an unstable steady state. This latter region is extremely small, so much so that it could be reasonably neglected in any predictions made from the model.


Author(s):  
Sagiri Ishimoto ◽  
Hiromu Hashimoto

Abstract This paper describes a self-excited vibration model of dragonfly’s wing based on the concept of bionic design, which is expected as a technological hint to solve the scale effect problems in developing the small- or micro-sized actuators. From a morphological consideration of flight muscle of dragonfly, the nonlinear equation of motion for the wing considering the air drag force due to flapping of wing is formulated. In the model, the dry friction-type and Van der Pol-type driving forces are employed to power the flight muscles and to generate the stable self-excited wing vibration. Two typical Japanese dragonflies, “Anotogaster sieboldii Selys” and “Sympetrum frequens Selys”, are selected as examples, and the self-excited vibration analyses for these dragonfly’s wings are demonstrated. The linearized solutions for the nonlinear equation of motion are compared with the nonlinear solutions, and the vibration system parameters to generate the stable limit cycle of self-excited wing vibration are determined.


Sign in / Sign up

Export Citation Format

Share Document