scholarly journals Lexical frequency and sentence context influence the brain’s response to single words

2021 ◽  
pp. 1-77
Author(s):  
Eleanor Huizeling ◽  
Sophie Arana ◽  
Peter Hagoort ◽  
Jan Mathijs Schoffelen

Abstract Typical adults read remarkably quickly. Such fast reading is facilitated by brain processes that are sensitive to both word frequency and contextual constraints. It is debated as to whether these attributes have additive or interactive effects on language processing in the brain. We investigated this issue by analysing existing magnetoencephalography data from 99 participants reading intact and scrambled sentences. Using a cross-validated model comparison scheme, we found that lexical frequency predicted the word-by-word elicited MEG signal in a widespread cortical network, irrespective of sentential context. In contrast, index (ordinal word position) was more strongly encoded in sentence words, in left front-temporal areas. This confirms that frequency influences word processing independently of predictability, and that contextual constraints affect word-byword brain responses. With a conservative multiple comparisons correction, only the interaction between lexical frequency and surprisal survived, in anterior temporal and frontal cortex, and not between lexical frequency and entropy, nor between lexical frequency and index. However, interestingly, the uncorrected index*frequency interaction revealed an effect in left frontal and temporal cortex that reversed in time and space for intact compared to scrambled sentences. Finally, we provide evidence to suggest that, in sentences, lexical frequency and predictability may independently influence early (<150ms) and late stages of word processing, but also interact during late stages of word processing (>150-250ms), thus helping to converge previous contradictory eye-tracking and electrophysiological literature. Current neuro-cognitive models of reading would benefit from accounting for these differing effects of lexical frequency and predictability on different stages of word processing.

2020 ◽  
Author(s):  
Eleanor Huizeling ◽  
Sophie Arana ◽  
Peter Hagoort ◽  
Jan Mathijs Schoffelen

AbstractRemarkably fast reading is facilitated by brain processes that are sensitive to both word frequency and contextual constraints. It is debated as to whether these attributes have additive or interactive effects on language processing in the brain. We investigated this issue by analysing existing magnetoencephalography data from 99 participants reading sentences and word-lists. Using a cross-validated model comparison scheme, we found that lexical frequency predicted the word-by-word elicited MEG signal in a widespread cortical network, irrespective of sentential context. In contrast, index (ordinal word position) was more strongly encoded in sentence words, in left front-temporal areas. This suggests that frequency influences word processing independently of predictability, and that contextual constraints affect word-by-word brain responses. Interestingly, an exploration of the index*frequency interaction revealed an effect (in left frontal and temporal cortex) that reversed in time and space for sentences compared to word-lists. These findings may improve future neuro-cognitive models of reading.


2020 ◽  
Author(s):  
Kun Sun

Expectations or predictions about upcoming content play an important role during language comprehension and processing. One important aspect of recent studies of language comprehension and processing concerns the estimation of the upcoming words in a sentence or discourse. Many studies have used eye-tracking data to explore computational and cognitive models for contextual word predictions and word processing. Eye-tracking data has previously been widely explored with a view to investigating the factors that influence word prediction. However, these studies are problematic on several levels, including the stimuli, corpora, statistical tools they applied. Although various computational models have been proposed for simulating contextual word predictions, past studies usually preferred to use a single computational model. The disadvantage of this is that it often cannot give an adequate account of cognitive processing in language comprehension. To avoid these problems, this study draws upon a massive natural and coherent discourse as stimuli in collecting the data on reading time. This study trains two state-of-art computational models (surprisal and semantic (dis)similarity from word vectors by linear discriminative learning (LDL)), measuring knowledge of both the syntagmatic and paradigmatic structure of language. We develop a `dynamic approach' to compute semantic (dis)similarity. It is the first time that these two computational models have been merged. Models are evaluated using advanced statistical methods. Meanwhile, in order to test the efficiency of our approach, one recently developed cosine method of computing semantic (dis)similarity based on word vectors data adopted is used to compare with our `dynamic' approach. The two computational and fixed-effect statistical models can be used to cross-verify the findings, thus ensuring that the result is reliable. All results support that surprisal and semantic similarity are opposed in the prediction of the reading time of words although both can make good predictions. Additionally, our `dynamic' approach performs better than the popular cosine method. The findings of this study are therefore of significance with regard to acquiring a better understanding how humans process words in a real-world context and how they make predictions in language cognition and processing.


2011 ◽  
Vol 23 (2) ◽  
pp. 223-243 ◽  
Author(s):  
Richard J. File-Muriel ◽  
Earl K. Brown

AbstractWhereas previous studies of Spanishs-weakening have relied on impressionistic coding, the present study examines temporal and gradient acoustic details in the production of /s/ by eight females from Cali, Colombia, during sociolinguistic interviews. We propose a metric for quantifyings-realization by employing three scalar-dependent variables:s-duration, centroid, and voicelessness. The results of linear regressions indicate that the dependent variables are significantly conditioned by local speaking rate, word position, following and preceding phonological context, stress, and lexical frequency. This study sheds light on how each independent variable influencess-realization acoustically. For example, as local speaking rate increases, duration, centroid, and voicelessness decrease, which is indicative of lenition, and the same weakening tendency is observed when /s/ occurs in word-final position or is followed by a nonhigh vowel, whereas frequency contributes only tos-duration. We discuss the advantages of opting for instrumental measurements over symbolic representation.


1997 ◽  
Vol 9 (5) ◽  
pp. 664-686 ◽  
Author(s):  
D. Bavelier ◽  
D. Corina ◽  
P. Jezzard ◽  
S. Padmanabhan ◽  
V. P. Clark ◽  
...  

In this study, changes in blood oxygenation and volume were monitored while monolingual right-handed subjects read English sentences. Our results confirm the role of the left peri-sylvian cortex in language processing. Interestingly, individual subject analyses reveal a pattern of activation characterized by several small, limited patches rather than a few large, anatomically well-circumscribed centers. Between-subject analyses confirm a lateralized pattern of activation and reveal active classical language areas including Broca's area, Wernicke's area, and the angular gyms. In addition they point to areas only more recently considered as language-relevant including the anterior portion of the superior temporal sulcus. This area has not been reliably observed in imaging studies of isolated word processing. This raises the hypothesis that activation in this area is dependent on processes specific to sentence reading.


2001 ◽  
Vol 13 (6) ◽  
pp. 829-843 ◽  
Author(s):  
A. L. Roskies ◽  
J. A. Fiez ◽  
D. A. Balota ◽  
M. E. Raichle ◽  
S. E. Petersen

To distinguish areas involved in the processing of word meaning (semantics) from other regions involved in lexical processing more generally, subjects were scanned with positron emission tomography (PET) while performing lexical tasks, three of which required varying degrees of semantic analysis and one that required phonological analysis. Three closely apposed regions in the left inferior frontal cortex and one in the right cerebellum were significantly active above baseline in the semantic tasks, but not in the nonsemantic task. The activity in two of the frontal regions was modulated by the difficulty of the semantic judgment. Other regions, including some in the left temporal cortex and the cerebellum, were active across all four language tasks. Thus, in addition to a number of regions known to be active during language processing, regions in the left inferior frontal cortex were specifically recruited during semantic processing in a task-dependent manner. A region in the right cerebellum may be functionally related to those in the left inferior frontal cortex. Discussion focuses on the implications of these results for current views regarding neural substrates of semantic processing.


Author(s):  
Sheila Blumstein

This article reviews current knowledge about the nature of auditory word recognition deficits in aphasia. It assumes that the language functioning of adults with aphasia was normal prior to sustaining brain injury, and that their word recognition system was intact. As a consequence, the study of aphasia provides insight into how damage to particular areas of the brain affects speech and language processing, and thus provides a crucial step in mapping out the neural systems underlying speech and language processing. To this end, much of the discussion focuses on word recognition deficits in Broca's and Wernicke's aphasics, two clinical syndromes that have provided the basis for much of the study of the neural basis of language. Clinically, Broca's aphasics have a profound expressive impairment in the face of relatively good auditory language comprehension. This article also considers deficits in processing the sound structure of language, graded activation of the lexicon, lexical competition, influence of word recognition on speech processing, and influence of sentential context on word recognition.


Author(s):  
Geqi Qi ◽  
Jinglong Wu

The sensitivity of the left ventral occipito-temporal (vOT) cortex to visual word processing has triggered a considerable debate about the functional role of this region in reading. The debate rests largely on the issue whether this particular region is specifically dedicated to reading and the extraction of invariant visual word form. A lot of studies have been conducted to provide evidences supporting or against the functional specialization of this region. However, the trend is showing that the different functional properties proposed by the two kinds of view are not in conflict with each other, but instead show different sides of the same fact. Here, the authors focus on two questions: firstly, where do the two views conflict, and secondly, how do they fit with each other on a larger framework of functional organization in object vision pathway? This review evaluates findings from the two sides of the debate for a broader understanding of the functional role of the left vOT cortex.


1999 ◽  
Vol 10 (1) ◽  
pp. 85-91
Author(s):  
Chris Davis ◽  
Anne Castles

ABSTRACTThis paper discusses the background and use of the masked priming procedure in adult psycholinguistic research. Using this technique, we address the issue of how precise the letter and word processing systems of adults is for rapidly displayed stimuli. Data is reviewed that suggests that, for skilled readers, the letter and word recognition system is sensitively tuned to the discrimination demands imposed on it by the properties of the written language. That is, the recognition system is able to be discriminative where precision is required, but is also able to consider and use incomplete information when this is predictive.


Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Shardrom Johnson ◽  
Sherlock Shen ◽  
Yuanchen Liu

Usually taken as linguistic features by Part-Of-Speech (POS) tagging, Named Entity Recognition (NER) is a major task in Natural Language Processing (NLP). In this paper, we put forward a new comprehensive-embedding, considering three aspects, namely character-embedding, word-embedding, and pos-embedding stitched in the order we give, and thus get their dependencies, based on which we propose a new Character–Word–Position Combined BiLSTM-Attention (CWPC_BiAtt) for the Chinese NER task. Comprehensive-embedding via the Bidirectional Llong Short-Term Memory (BiLSTM) layer can get the connection between the historical and future information, and then employ the attention mechanism to capture the connection between the content of the sentence at the current position and that at any location. Finally, we utilize Conditional Random Field (CRF) to decode the entire tagging sequence. Experiments show that CWPC_BiAtt model we proposed is well qualified for the NER task on Microsoft Research Asia (MSRA) dataset and Weibo NER corpus. A high precision and recall were obtained, which verified the stability of the model. Position-embedding in comprehensive-embedding can compensate for attention-mechanism to provide position information for the disordered sequence, which shows that comprehensive-embedding has completeness. Looking at the entire model, our proposed CWPC_BiAtt has three distinct characteristics: completeness, simplicity, and stability. Our proposed CWPC_BiAtt model achieved the highest F-score, achieving the state-of-the-art performance in the MSRA dataset and Weibo NER corpus.


2007 ◽  
Vol 10 (2) ◽  
pp. 201-210 ◽  
Author(s):  
BRENDAN STUART WEEKES ◽  
I FAN SU ◽  
WENGANG YIN ◽  
XIHONG ZHANG

Cognitive neuropsychological studies of bilingual patients with aphasia have contributed to our understanding of how the brain processes different languages. The question we asked is whether differences in script have any impact on language processing in bilingual aphasic patients who speak languages with different writing systems: Chinese and Mongolian. We observed a pattern of greater impairment to written word comprehension and oral reading in L2 (Chinese) than in L1 (Mongolian) for two patients. We argue that differences in script have only a minimal effect on written word processing in bilingual aphasia when the age of acquisition, word frequency and imageability of lexical items is controlled. Our conclusion is that reading of familiar words in Mongolian and Chinese might not require independent cognitive systems or brain regions.


Sign in / Sign up

Export Citation Format

Share Document