scholarly journals Use of Random Dot Patterns in Achieving X-Ray Vision for Near-Field Applications of Stereoscopic Video-Based Augmented Reality Displays

2017 ◽  
Vol 26 (1) ◽  
pp. 42-65 ◽  
Author(s):  
Sanaz Ghasemi ◽  
Mai Otsuki ◽  
Paul Milgram ◽  
Ryad Chellali

This article addresses some of the challenges involved with creating a stereoscopic video augmented reality “X-ray vision” display for near-field applications, which enables presentation of computer-generated objects as if they lie behind a real object surface, while maintaining the ability to effectively perceive information that might be present on that surface. To achieve this, we propose a method in which patterns consisting of randomly distributed dots are overlaid onto the real surface prior to the rendering of a virtual object behind the real surface using stereoscopic disparity. It was hypothesized that, even though the virtual object is occluding the real object’s surface, the addition of the random dot patterns should increase the strength of the binocular disparity cue, resulting in improved performance in localizing the virtual object behind the surface. In Phase I of the experiment reported here, the feasibility of the display principle was confirmed, and concurrently the effects of relative dot size and dot density on the presence and sensitivity of any perceptual bias in localizing the virtual object within the vicinity of a flat, real surface with a periodic texture were assessed. In Phase II, the effect of relative dot size and dot density on perceiving the impression of transparency of the same real surface while preserving detection of surface information was investigated. Results revealed an advantage of the proposed method in comparison with the “No Pattern” condition for the transparency ratings. Surface information preservation was also shown to decrease with increasing dot density and relative dot size.

2019 ◽  
Vol 9 (9) ◽  
pp. 1797
Author(s):  
Chen ◽  
Lin

Augmented reality (AR) is an emerging technology that allows users to interact with simulated environments, including those emulating scenes in the real world. Most current AR technologies involve the placement of virtual objects within these scenes. However, difficulties in modeling real-world objects greatly limit the scope of the simulation, and thus the depth of the user experience. In this study, we developed a process by which to realize virtual environments that are based entirely on scenes in the real world. In modeling the real world, the proposed scheme divides scenes into discrete objects, which are then replaced with virtual objects. This enables users to interact in and with virtual environments without limitations. An RGB-D camera is used in conjunction with simultaneous localization and mapping (SLAM) to obtain the movement trajectory of the user and derive information related to the real environment. In modeling the environment, graph-based segmentation is used to segment point clouds and perform object segmentation to enable the subsequent replacement of objects with equivalent virtual entities. Superquadrics are used to derive shape parameters and location information from the segmentation results in order to ensure that the scale of the virtual objects matches the original objects in the real world. Only after the objects have been replaced with their virtual counterparts in the real environment converted into a virtual scene. Experiments involving the emulation of real-world locations demonstrated the feasibility of the proposed rendering scheme. A rock-climbing application scenario is finally presented to illustrate the potential use of the proposed system in AR applications.


Author(s):  
Woodrow Barfield ◽  
Craig Rosenberg

Recent technological advancements in virtual environment equipment have led to the development of augmented reality displays for applications in medicine, manufacturing, and scientific visualization (Bajura et al., 1992; Janin et al., 1993; Milgram et al., 1991; Lion et al., 1993). However, even with technological advances in virtual environment equipment, the development of augmented reality displays are still in the early stages of development, primarily demonstrating the possibilities, the use, and the technical realization of the concept. The purpose of this chapter is to review the literature on the design and use of augmented reality displays, to suggest applications for this technology, and to suggest new techniques to create these displays. In addition, the chapter also discusses the technological issues associated with creating augmented realities such as image registration, update rate, and the range and sensitivity of position sensors. Furthermore, the chapter discusses humanfactors issues and visual requirements that should be considered when creating augmented-reality displays. Essentially, an augmented-reality display allows a designer to combine part or all of a real-world visual scene, with synthetic imagery. Typically, the real-world visual scene in an augmented-reality display is captured by video or directly viewed. In terms of descriptions of augmented reality found in the literature, Janin et al. (1993) used the term “augmented reality” to signify a see-through head-mounted display (HMD) which allowed the user to view his surroundings with the addition of computer graphics overlaid on the real-world scene. Similarly, Robinett (1992) suggested the term “augmented reality” for a real image that was being enhanced with synthetic parts; he called the result a “merged representation”. Finally, Fuchs and Neuman (1993) observed that an augmented-reality display combined a simulated environment with direct perception of the world with the capability to interactively manipulate the real or virtual object(s). Based on the above descriptions, most current augmented-reality displays are designed using see-through HMDs which allow the observer to view the real world directly with the naked eye. However, if video is used to capture the real world, one may use either an opaque HMD or a screen-based system to view the scene (Lion et al., 1993).


Author(s):  
Arpita M Hegde

The Real environment is supplemented or augmented with the computer-generated virtual objects or image is known as Augmented Reality. Augmented Reality adds thing to the existing world. It is an enhancement of real world where we mix the real world with the virtual objects. In this paper we are implementing a methodology that builds preview of the interior designs of the room which contains the virtual object alongside the real environment. Using this application user can place the selected objects such as furniture, lamps, vase etc in their personal space. This eventually reduces the challenging task of purchasing and adjusting non suitable objects to his or her room as user gets the preview before purchasing the actual item. This application is more suitable for this busy and digitalizing world.


Author(s):  
Oleksandr Bezpalko

Unlike a purely virtual world, it is much more difficult for the user to believe in the reality of augmented reality objects. Due to the lack of proper lighting or shadows, the object may appear to be floating in the air, detached from the real objects around it. One obvious problem with augmented reality is that a virtual object appears remote from the real object, but it still appears in front of it. An approach is proposed that will allow the interaction of real and virtual objects. Both real and virtual objects can be moved and rotated in the scene, preserving overlaps. A virtual object can also be placed in front of or behind a real object relative to the camera, which decides whether or not to overlap. The proposed algorithm consists of five stages and the system architecture. The evaluation is based on five defined criteria. Results and ways of improvement for the future research are presented.


Author(s):  
Klaus-Ruediger Peters

Environmental SEM operate at specimen chamber pressures of ∼20 torr (2.7 kPa) allowing stabilization of liquid water at room temperature, working on rugged insulators, and generation of an environmental secondary electron (ESE) signal. All signals available in conventional high vacuum instruments are also utilized in the environmental SEM, including BSE, SE, absorbed current, CL, and X-ray. In addition, the ESEM allows utilization of the flux of charge carriers as information, providing exciting new signal modes not available to BSE imaging or to conventional high vacuum SEM.In the ESEM, at low vacuum, SE electrons are collected with a “gaseous detector”. This detector collects low energy electrons (and ions) with biased wires or plates similar to those used in early high vacuum SEM for SE detection. The detector electrode can be integrated into the first PLA or positioned at any other place resulting in a versatile system that provides a variety of surface information.


Author(s):  
Toshihiko Takita ◽  
Tomonori Naguro ◽  
Toshio Kameie ◽  
Akihiro Iino ◽  
Kichizo Yamamoto

Recently with the increase in advanced age population, the osteoporosis becomes the object of public attention in the field of orthopedics. The surface topography of the bone by scanning electron microscopy (SEM) is one of the most useful means to study the bone metabolism, that is considered to make clear the mechanism of the osteoporosis. Until today many specimen preparation methods for SEM have been reported. They are roughly classified into two; the anorganic preparation and the simple preparation. The former is suitable for observing mineralization, but has the demerit that the real surface of the bone can not be observed and, moreover, the samples prepared by this method are extremely fragile especially in the case of osteoporosis. On the other hand, the latter has the merit that the real information of the bone surface can be obtained, though it is difficult to recognize the functional situation of the bone.


2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.


2020 ◽  
Vol 18 (45) ◽  
pp. 21-31
Author(s):  
Salman Zaidan Khalaf ◽  
Khaleel Abrahim ◽  
Imad Kassar Akeab

    X-ray emission contains some of the gaseous properties is produced when the particles of the solar wind strike the atmosphere of comet ISON and PanSTARRS Comets. The data collected with NASA Chandra X-ray Observatory of the two comets, C/2012 S1 (also known as Comet ISON) and C/2011 S4 (Comet PanSTARRS) are used in this study.    The real abundance of the observed X-ray spectrum elements has been extracted by a new simple mathematic model. The study found some physical properties of these elements in the comet’s gas such as a relationship between the abundance with emitted energy. The elements that have emission energy (2500-6800) eV, have abundance (0.1-0.15) %, while the elements that have emission energy (850-2500) eV and (6800-9250) eV have abundance (0.2-0.3) %.    The relation between interacted energy and atomic number is form two sets.  The interacted energy of each element is increased as the atomic number increased. This case has been seen in both comets


Information ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Stavroula Tzima ◽  
Georgios Styliaras ◽  
Athanasios Bassounas

Escape Rooms are presently considered a very popular social entertainment activity, with increasing popularity in education field, since they are considered capable of stimulating the interest of players/students and enhancing learning. The combined game mechanics have led to blended forms of Escape Rooms, the Serious Escape Games (SEGs) and the hybrid type of Escape Rooms that uses Augmented Reality (AR)/Virtual Reality technology, a type that is expected to be widely used in the future. In the current study, the MillSecret is presented, a multi-player Serious Escape Game about local cultural heritage, where the players must solve a riddle about the cultural asset of watermills. MillSecret uses AR technology and it was designed to be conducted in the real-physical environment and in an informal educational context. The paper describes the game, its implementation, the playing process, and its evaluation, which aimed to study the feasibility of game conduction in outdoor settings and the views and experience of players with the game, the local cultural heritage and local history. Evaluation results reveal, among other findings, a very positive first feedback from players that allows us to further evolve the development of the game.


2020 ◽  
Vol 14 (6) ◽  
Author(s):  
Irene Zanette ◽  
Richard Clare ◽  
David Eastwood ◽  
Charan Venkata ◽  
Franz Pfeiffer ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document