Sex ratio and body size among hatchlings of habu, Trimeresurus flavoviridis, from the Okinawa Islands, Japan

1993 ◽  
Vol 14 (3) ◽  
pp. 275-283 ◽  
Author(s):  
Takao Kamura ◽  
Masahiko Nishimura

AbstractEmbryo and hatchling sex ratios were unbiased in samples of habu, Trimeresurus flavoviridis, from Okinawa, Japan. Sex ratios dit not vary with maternal size or age. Large eggs produced large hatchlings with high proportions of residual yolk. Slender eggs produced lighter hatchlings.

2020 ◽  
Author(s):  
Jessica M. Judson ◽  
Luke A. Hoekstra ◽  
Kaitlyn G. Holden ◽  
Fredric J. Janzen

ABSTRACTSexual selection is often assumed to elicit sexually dimorphic traits. However, most work on this assumption in tetrapod vertebrates has focused on birds. In this field experiment, we assessed relationships between both sexually dimorphic (body size, claw length) and non-dimorphic traits (forelimb stripe color, baseline corticosterone concentrations) and reproductive success in adult painted turtles to explicate the roles of these phenotypes in mate choice and the evolution of sexual dimorphism. We also modified adult sex ratios in experimental ponds to elucidate the role of biased sex ratios on reproductive success, which is a timely test of the potential threat of biased sex ratios on population persistence in a species with temperature-dependent sex determination. We found no strong influence of male phenotypes on male siring success, but female body size and baseline corticosterone concentrations predicted female clutch sizes. We find weak evidence that adult sex ratio influences male siring success, with a male-biased sex ratio producing lower male siring success than a female-biased sex ratio. This study offers evidence that female mate choice may not be an important selective force on male phenotypes, but that instead selection occurs on female phenotypes, particularly body size and corticosterone concentrations. Further, biased adult sex ratios can influence reproductive success of both sexes. Finally, the use of Kompetitive Allele Specific PCR (KASP) was highly successful in parentage analysis, which adds reptiles to the growing list of taxa successfully genotyped with this new technology.Lay SummaryFemale painted turtles aren’t choosy about traits of their mates. In a field experiment, we find that male traits do not predict male fitness, but key female traits (body size and stress levels) do predict female reproductive success. Further, we find weak evidence that adult sex ratio influences individual fitness in this species with environmental sex determination. Ultimately, we reject the long-assumed importance of female mate choice in this freshwater turtle.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8834
Author(s):  
Yun Tang ◽  
Zhi-Qiang Chen ◽  
You-Fu Lin ◽  
Jing-Yi Chen ◽  
Guo-Hua Ding ◽  
...  

Background The tiger frog (Hoplobatrachus rugulosus) is widely raised by many farms in southern region of China as an economically edible frog. The growth, development, and sexual differentiation of amphibians are influenced by temperature and steroid hormone level. However, the problem of hormone residues is caused by the addition of exogenous hormones in frog breeding, it is worth considering whether non-sterol aromatase inhibitors can be used instead of hormones. Methods In our study, H. rugulosus tadpoles were subjected to two water temperatures (29 °C and 34 °C) and three letrozole concentrations in the feed (0, 0.1 and 1 mg/g) to examine the effects of temperature, aromatase inhibitor and their interaction on metamorphosis, locomotion, and sex ratios. A G-test and contingency table were used to analyze the metamorphosis rate of tadpoles and the survival rate of froglets after feeding for 90 days. A G-test was also used to analyze sex ratios in different treatment groups. Results Metamorphosis time and body size (snout–vent length, body mass and condition factor) were significantly different between the two temperature treatments. Metamorphosis time was longer and body size was increased at 29 °C compared to those at 34 °C. Letrozole concentration and the temperature × letrozole interaction did not affect these variables. The jumping distance of froglets following metamorphosis was positively associated with the condition factor; when controlling for condition factor, jumping distance was not affected by temperature, letrozole concentration and their interaction. Temperature and letrozole concentration also did not affect metamorphosis and survival rate. Sex ratio of the control group (0 mg/g letrozole) was 1:1 at 29 °C, but there were more males at 34 °C. The sex ratios of H. rugulosus treated with letrozole at 29 °C and 34 °C were significantly biased toward males, and male ratio increased as letrozole concentration increased. Furthermore, more males were produced at 34 °C than at 29 °C at each letrozole concentration.


1999 ◽  
Vol 77 (4) ◽  
pp. 524-529 ◽  
Author(s):  
Risa D Sargent ◽  
Mary L Reid

Facultative sex ratio manipulation has been examined in a limited number of diploid species, mainly vertebrates. We tested the prediction that mothers would preferentially place males in conditions conducive to large size in the diploid pine engraver bark beetle, Ips pini. In this species, males are the larger sex and therefore male reproductive success was expected to be more dependent on body size than female reproductive success. Because body size is largely environmentally determined in bark beetles, mothers were expected to alter sex ratios in response to habitat quality. Contrary to predictions, offspring sex ratios tended to be more female biased in situations conducive to large offspring size than in situations producing offspring of small size. We were able to rule out nonadaptive explanations such as differential mortality or development times of males and females, suggesting that the observed pattern is adaptive. This study provides a rare example of sex ratio manipulation in diploid insects. However, the unexpected direction of sex ratio biases suggests that daughters gain a yet unknown benefit from being reared in high-quality conditions that surpasses the fitness that would be gained from producing relatively larger sons.


2021 ◽  
pp. 140349482110100
Author(s):  
Ralph Catalano

Aims: To determine whether differences between Norway’s and Sweden’s attempts to contain SARS-CoV-2 infection coincided with detectably different changes in their all-cause mortality sex ratios. Measuring temporal variation in the all-cause mortality sex ratio before and during the pandemic in populations exposed to different constraints on risky behavior would allow us to better anticipate changes in the ratio and to better understand its association with infection control strategies. Methods: I apply time Box–Jenkins modeling to 262 months of pre-pandemic mortality sex ratios to arrive at counterfactual values of 10 intra-pandemic ratios. I compare counterfactual to observed values to determine if intra-pandemic ratios differed detectably from those expected as well as whether the Norwegian and Swedish differences varied from each other. Results: The male to female mortality sex ratio in both Norway and Sweden increased during the pandemic. I, however, find no evidence that the increase differed between the two countries despite their different COVID-19 containment strategies. Conclusion: Societal expectations of who will die during the COVID-19 pandemic will likely be wrong if they assume pre-pandemic mortality sex ratios because the intra-pandemic ratios appear, at least in Norway and Sweden, detectably higher. The contribution of differences in policies to reduce risky behavior to those higher ratios appears, however, small.


2021 ◽  
Vol 112 (2) ◽  
pp. 155-164
Author(s):  
Suzanne Edmands

Abstract Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males. For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1169-1180 ◽  
Author(s):  
Daven C Presgraves ◽  
Emily Severance ◽  
Gerald S Willrinson

Meiotically driven sex chromosomes can quickly spread to fixation and cause population extinction unless balanced by selection or suppressed by genetic modifiers. We report results of genetic analyses that demonstrate that extreme female-biased sex ratios in two sister species of stalk-eyed flies, Cyrtodiopsis dalmanni and C. whitei, are due to a meiotic drive element on the X chromosome (Xd). Relatively high frequencies of Xd in C. dalmanni and C. whitei (13–17% and 29%, respectively) cause female-biased sex ratios in natural populations of both species. Sex ratio distortion is associated with spermatid degeneration in male carriers of Xd. Variation in sex ratios is caused by Y-linked and autosomal factors that decrease the intensity of meiotic drive. Y-linked polymorphism for resistance to drive exists in C. dalmanni in which a resistant Y chromosome reduces the intensity and reverses the direction of meiotic drive. When paired with Xd, modifying Y chromosomes (Ym) cause the transmission of predominantly Y-bearing sperm, and on average, production of 63% male progeny. The absence of sex ratio distortion in closely related monomorphic outgroup species suggests that this meiotic drive system may predate the origin of C. whitei and C. dalmanni. We discuss factors likely to be involved in the persistence of these sex-linked polymorphisms and consider the impact of Xd on the operational sex ratio and the intensity of sexual selection in these extremely sexually dimorphic flies.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1793
Author(s):  
Justin Van Goor ◽  
Diane C. Shakes ◽  
Eric S. Haag

Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker. 


Author(s):  
Rowena Lamy

The Race A/Race B hybrid females of D. pseudo-obscura have a high percentage of fertility, comparable with that of females of pure race. The number and viability of their offspring, however, are largely affected by the genetic constitution of the hybrid female as well as by that of the male to which she is mated in the backcross. Hence the performance of any given hybrid is determined in the first instance by the actual strains of the pure races which are used in making the P1 racial cross. Generally speaking the results are of the same order whenever the same strains are used. The progenies of hybrid females of different genetic constitution may differ in three main aspects: (1) The total number of offspring may be comparable with that usually obtained in a pure race cross; it may be reduced to any extent; in certain matings it is consistently at zero. (2) The sex ratio may be completely normal or male-deficient or female-deficient in any degree; completely uni-sexual progenies are sometimes obtained. (The above observations are mainly in agreement with reports of earlier writers; cf. Lancefield, 1929, Dobzhansky, 1936, Mampell, 1941, Sturtevant, 1937.) (3) “Viability characters,” i.e. those affecting general vigour and physical normality, may be of a high or a low grade; some progenies are comparable in this respect with the pure race, the only exception being that they show a much greater range of variation in body-size of both sexes, and in the testis size of males, abnormalities which are common to all back-cross progenies whatever the genetic constitution of the mother or father. Some progenies show in addition deformities of a peculiar type usually affecting the abdomen and occasionally the legs and wings.


1966 ◽  
Vol 98 (6) ◽  
pp. 639-644 ◽  
Author(s):  
B. C. Smith

AbstractThe weight and size of coccinellid adults varied with species, sex, and feeding. Intraspecies variation in weight was generally similar in the eight species studied. Females were more variable than males in body size. Females of some species were heavier and larger than males, and species can be classified on a basis of difference in the weight and size of the sexes.An increase in the food supply after a period of food scarcity affected the sex ratio, as the minimum food requirement of females was greater than males. Females increased in weight more rapidly than males after feeding. The availability of food in the field affected the weight and size of some species. Adult water content was influenced by feeding but not by sex or the quantity of food given to the larva.Males were more abundant in species with small sexual differences in weight and size. The degree of difference in weight and size between males and females may be used as a criterion to select species that are best adapted to survive when food is scarce.


Sign in / Sign up

Export Citation Format

Share Document