Elite workers and the colony-level pattern of labor division in the yellowjacket wasp, Vespula germanica

Behaviour ◽  
2003 ◽  
Vol 140 (7) ◽  
pp. 827-845 ◽  
Author(s):  
Erik Nordheim ◽  
Christine Hurd ◽  
Robert Jeanne

AbstractMeasurements of carbohydrate foraging behavior of Vespula germanica yellowjackets show that the distribution of the number of foragers over the number of trips is highly skewed with a few foragers making a disproportionate number of trips. We tested several empirical models based on different biological assumptions to see which model best described the distribution. For all periods of observation, the data are well fitted by a straight line on a log-log plot. This fit indicates that the distribution of labor is non-increasing monotonic; i.e. continually decreasing, and follows a power law. Stochasticity and self-organization are two possible explanations for the power law distribution. As an alternative approach, cluster analysis of various foraging characteristics of individual foragers clearly separated foragers into two groups and is consistent with a bimodal model for the division of foraging labor. Based on these cluster results, we operationally defined workers as either 'elite' or 'non-elite'. We found that elite foragers are not more likely than non-elites to be task specialists. The data show that workers develop into elites but do not support the hypothesis of self-reinforcement as the mechanism.

Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1055
Author(s):  
Bogatov ◽  
Podgursky ◽  
Vagiström ◽  
Yashin ◽  
Shaikh ◽  
...  

The paper investigates the variation of friction force (Fx) during reciprocating sliding tests on nanocrystalline diamond (NCD) films. The analysis of the friction behavior during the run-in period is the focus of the study. The NCD films were grown using microwave plasma-enhanced chemical vapor deposition (MW-PECVD) on single-crystalline diamond SCD(110) substrates. Reciprocating sliding tests were conducted under 500 and 2000 g of normal load using Si3N4 balls as a counter body. The friction force permanently varies during the test, namely Fx value can locally increase or decrease in each cycle of sliding. The distribution of friction force drops (dFx) was extracted from the experimental data using a specially developed program. The analysis revealed a power-law distribution f-µ of dFx for the early stage of the run-in with the exponent value (µ) in the range from 0.6 to 2.9. In addition, the frequency power spectrum of Fx time series follows power-law distribution f-α with α value in the range of 1.0–2.0, with the highest values (1.6–2.0) for the initial stage of the run-in. No power-law distribution of dFx was found for the later stage of the run-in and the steady-state periods of sliding with the exception for periods where a relatively extended decrease of coefficient of friction (COF) was observed. The asperity interlocking leads to the stick-slip like sliding at the early stage of the run-in. This tribological behavior can be related to the self-organized criticality (SOC). The emergence of dissipative structures at the later stages of the run-in, namely the formation of ripples, carbonaceous tribolayer, etc., can be associated with the self-organization (SO).


2004 ◽  
Vol 07 (02) ◽  
pp. 223-240 ◽  
Author(s):  
DOMENICO DELLI GATTI ◽  
CORRADO DI GUILMI ◽  
EDOARDO GAFFEO ◽  
GIANFRANCO GIULIONI ◽  
MAURO GALLEGATI ◽  
...  

Power law behavior is an emerging property of many economic models. In this paper we emphasize the fact that power law distributions are persistent but not time invariant. In fact, the scale and shape of the firms' size distribution fluctuate over time. In particular, on a log–log space, both the intercept and the slope of the power law distribution of firms' size change over the cycle: during expansions (recessions) the straight line representing the distribution shifts up and becomes less steep (steeper). We show that the empirical distributions generated by simulations of the model presented in Ref. 11 mimic real empirical distributions remarkably well.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kai Zhao ◽  
Mirco Musolesi ◽  
Pan Hui ◽  
Weixiong Rao ◽  
Sasu Tarkoma

2004 ◽  
Vol 13 (07) ◽  
pp. 1345-1349 ◽  
Author(s):  
JOSÉ A. S. LIMA ◽  
LUCIO MARASSI

A generalization of the Press–Schechter (PS) formalism yielding the mass function of bound structures in the Universe is given. The extended formula is based on a power law distribution which encompasses the Gaussian PS formula as a special case. The new method keeps the original analytical simplicity of the PS approach and also solves naturally its main difficult (the missing factor 2) for a given value of the free parameter.


2011 ◽  
Vol 116 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Andrew B. Collier ◽  
Thomas Gjesteland ◽  
Nikolai Østgaard

2007 ◽  
Vol 3 (S247) ◽  
pp. 279-287
Author(s):  
Patrick Antolin ◽  
Kazunari Shibata ◽  
Takahiro Kudoh ◽  
Daiko Shiota ◽  
David Brooks

AbstractAlfvén waves can dissipate their energy by means of nonlinear mechanisms, and constitute good candidates to heat and maintain the solar corona to the observed few million degrees. Another appealing candidate is the nanoflare-reconnection heating, in which energy is released through many small magnetic reconnection events. Distinguishing the observational features of each mechanism is an extremely difficult task. On the other hand, observations have shown that energy release processes in the corona follow a power law distribution in frequency whose index may tell us whether small heating events contribute substantially to the heating or not. In this work we show a link between the power law index and the operating heating mechanism in a loop. We set up two coronal loop models: in the first model Alfvén waves created by footpoint shuffling nonlinearly convert to longitudinal modes which dissipate their energy through shocks; in the second model numerous heating events with nanoflare-like energies are input randomly along the loop, either distributed uniformly or concentrated at the footpoints. Both models are based on a 1.5-D MHD code. The obtained coronae differ in many aspects, for instance, in the simulated intensity profile that Hinode/XRT would observe. The intensity histograms display power law distributions whose indexes differ considerably. This number is found to be related to the distribution of the shocks along the loop. We thus test the observational signatures of the power law index as a diagnostic tool for the above heating mechanisms and the influence of the location of nanoflares.


Sign in / Sign up

Export Citation Format

Share Document