scholarly journals Correlations between personality traits and roosting behaviours suggest a behavioural syndrome in little brown bats

Behaviour ◽  
2020 ◽  
Vol 157 (2) ◽  
pp. 143-183 ◽  
Author(s):  
Quinn M.R. Webber ◽  
Craig K.R. Willis

Abstract Behavioural syndromes are composed of correlated suites of personality traits and can include traits related to the behaviour and ecology of free-ranging animals. We used captive little brown bats (Myotis lucifugus) to test the hypothesis that behaviours measured in standardized tests reflect personality traits and form behavioural syndromes with roosting behaviours. We predicted: (1) measured behaviours would be repeatable; (2) personality traits and roosting behaviours would form behavioural syndromes; and (3) individuals with similar personality scores would associate more strongly. We observed repeatability for some traits and evidence of behavioural syndromes. Activity was strongly repeatable across time and contexts. More central individuals roosted in larger groups, while individuals with high roost-fidelity roosted in larger groups. Individuals with similar activity scores were also more likely to associate in day roosts, suggesting some behavioural assortment. Our results have implications for how behavioural variation might influence transmission of white-nose syndrome.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evan L. Pannkuk ◽  
Nicole A. S.-Y. Dorville ◽  
Yvonne A. Dzal ◽  
Quinn E. Fletcher ◽  
Kaleigh J. O. Norquay ◽  
...  

AbstractWhite-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease. Given the likely role of fat metabolism in WNS and the fact that the liver plays a crucial role in fatty acid distribution and lipid storage, we assessed hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at an early stage of infection with the etiological agent, Pseudogymnoascus destructans (Pd). Differences in lipid profiles were detected at the species and sex level in the sham-inoculated treatment, most strikingly in higher hepatic triacylglyceride (TG) levels in E. fuscus females compared to males. Interestingly, several dominant TGs (storage lipids) decreased dramatically after Pd infection in both female M. lucifugus and E. fuscus. Increases in hepatic glycerophospholipid (structural lipid) levels were only observed in M. lucifugus, including two phosphatidylcholines (PC [32:1], PC [42:6]) and one phosphatidylglycerol (PG [34:1]). These results suggest that even at early stages of WNS, changes in hepatic lipid mobilization may occur and be species and sex specific. As pre-hibernation lipid reserves may aid in bat persistence and survival during WNS, these early perturbations to lipid metabolism could have important implications for management responses that aid in pre-hibernation fat storage.


2011 ◽  
Vol 2 (2) ◽  
pp. 125-134 ◽  
Author(s):  
W. Mark Ford ◽  
Eric R. Britzke ◽  
Christopher A. Dobony ◽  
Jane L. Rodrigue ◽  
Joshua B. Johnson

Abstract White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007–2008. As regional die-offs of bats became evident, and Fort Drum's known populations began showing declines, we examined whether WNS-induced change in abundance patterns and seasonal timing of bat activity could be quantified using acoustical surveys, 2003–2010, at structurally uncluttered riparian–water habitats (i.e., streams, ponds, and wet meadows). As predicted, we observed significant declines in overall summer activity between pre-WNS and post-WNS years for little brown bats Myotis lucifugus, northern bats M. septentrionalis, and Indiana bats M. sodalis. We did not observe any significant change in activity patterns between pre-WNS and post-WNS years for big brown bats Eptesicus fuscus, eastern red bats Lasiurus borealis, or the small number of tri-colored bats Perimyotis subflavus. Activity of silver-haired bats Lasionycteris noctivagans increased from pre-WNS to post-WNS years. Activity levels of hoary bats Lasiurus cinereus significantly declined between pre- and post-WNS years. As a nonhibernating, migratory species, hoary bat declines might be correlated with wind-energy development impacts occurring in the same time frame rather than WNS. Intraseason activity patterns also were affected by WNS, though the results were highly variable among species. Little brown bats showed an overall increase in activity from early to late summer pre-WNS, presumably due to detections of newly volant young added to the local population. However, the opposite occurred post-WNS, indicating that reproduction among surviving little brown bats may be declining. Our data suggest that acoustical monitoring during the summer season can provide insights into species' relative abundance on the landscape as affected by the occurrence of WNS.


2014 ◽  
Vol 105 (3) ◽  
pp. 354-364 ◽  
Author(s):  
C. M. Miller-Butterworth ◽  
M. J. Vonhof ◽  
J. Rosenstern ◽  
G. G. Turner ◽  
A. L. Russell

EcoHealth ◽  
2011 ◽  
Vol 8 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Nathan W. Fuller ◽  
Jonathan D. Reichard ◽  
Morgan L. Nabhan ◽  
Spenser R. Fellows ◽  
Lesley C. Pepin ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
M. J. Souza ◽  
T. Cairns ◽  
J. Yarbrogh ◽  
S. K. Cox

A terbinafine impregnated subcutaneous implant was evaluated to determine if drug was released into isotonic saline over the course of 6 months at two different temperatures, 37°C and 4°C. These temperatures were chosen to simulate the nonhibernating (37°C) and hibernating body (4°C) temperatures of little brown bats (Myotis lucifugus). Insectivorous bats of North America, including little brown bats, have been devastated by white nose syndrome, a fungal infection caused by Geomyces destructans. No treatments exist for bats infected with G. destructans. Implants were placed into isotonic saline; samples were collected once per week and analyzed with HPLC to determine terbinafine concentrations. The mean amount of terbinafine released weekly across the 28 weeks was approximately 1.7 μg at 4°C and 4.3 μg at 37°C. Although significant differences in the amount released did occur at some time points, these differences were not consistently greater or less at either of the temperatures. This study showed that terbinafine was released from an impregnated implant over the course of 6 months at concentrations ranging from 0.02 to 0.06 μg/mL depending on temperature, which may be appropriate for little brown bats (Myotis lucifugus) infected with Geomyces destructans, the etiologic agent of white nose syndrome.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tonie E. Rocke ◽  
Brock Kingstad-Bakke ◽  
Marcel Wüthrich ◽  
Ben Stading ◽  
Rachel C. Abbott ◽  
...  

2015 ◽  
Vol 6 (2) ◽  
pp. 360-370 ◽  
Author(s):  
Michael J. Lacki ◽  
Luke E. Dodd ◽  
Rickard S. Toomey ◽  
Steven C. Thomas ◽  
Zachary L. Couch ◽  
...  

Abstract The rapid colonization of the Pseudogymnoascus destructans fungus across cave systems in eastern North America and the associated bat mortalities (white-nose syndrome; WNS), necessitates studies of cave-hibernating bats that remain unaffected by, or in close proximity to, the leading edge of the fungal distribution to provide baseline predisturbance data from which to assess changes due to fungal effects. Studies of the physiological ecology of cave-hibernating bats during the spring staging and autumn swarming seasons are few, and an understanding of patterns in body condition of bats associated with entry into and emergence from hibernation is incomplete. We sampled bats at the entrance to a cave in Mammoth Cave National Park, Kentucky, during swarming and staging, prior to (2011 and 2012), concurrent with (2013), and following (2014) the arrival of the WNS fungus. We evaluated seasonal and annual changes in body mass and body condition of bats entering and leaving the cave. We captured 1,232 bats of eight species. Sex ratios of all species were male-biased. Capture success was substantially reduced in 2014, following the second winter after arrival of the WNS fungus. Significant temporal variation in body mass and body mass index was observed for little brown bats Myotis lucifugus, northern long-eared bats M. septentrionalis, and tri-colored bats Perimyotis subflavus, but not Indiana bats M. sodalis. Little brown bats and northern long-eared bats demonstrated significant increases in mean body mass index in 2014; this pattern likely reflected a relatively better body condition in bats that survived exposure to the WNS fungus. Most species demonstrated highest body mass and body mass index values in late swarming compared with other sampling periods, with tri-colored bats showing the greatest percent increase in body mass (42.5%) and body mass index (42.9%) prior to entering hibernation. These data indicate significant intraspecific variation in body condition of cave-hibernating bat species, both among years and between the seasons of autumn swarming and spring staging. We suggest this variation is likely to have implications for the relative vulnerability of species to WNS infection across the distribution of the Pseudogymnoascus fungus.


Sign in / Sign up

Export Citation Format

Share Document