The effect of mycorrhization of potato roots on the hatching chemicals active towards the potato cyst nematodes, Globodera pallida and G. rostochiensis

Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 335-342 ◽  
Author(s):  
Aileen Ryan ◽  
Peter Jones

AbstractComparison of potato root leachates (PRL) collected from the roots of mycorrhizal (using the mixed-isolate inoculum, Vaminoc) and non-mycorrhizal potato cv. Golden Wonder confirmed that mycorrhization caused a significant increase in hatching activity towards Globodera pallida but not G. rostochiensis. After fractionating the leachates by low pressure molecular exclusion/anion exchange liquid chromatography, several potato cyst nematode (PCN) species-specific hatching factors (HF) were found only in PRL from mycorrhizal plants. Leachate from mycorrhizal plants also contained more of several of those HF common to PRL from both mycorrhizal and non-mycorrhizal plants. Significantly more hatching factor stimulants (HS) active towards both PCN species were found in the PRL from mycorrhizal than from non-mycorrhizal plants; several HS were specific to mycorrhizal plants. No differences (quantitative or qualitative) were observed in hatching inhibitor (HI) levels between PRL from mycorrhizal and non-mycorrhizal plants. Mycorrhization of potato plants resulted in a 20% increase in carbon but a 48% decrease in nitrogen concentrations of the PRL compared to that from the non-mycorrhizal plants.

Nematology ◽  
2003 ◽  
Vol 5 (1) ◽  
pp. 55-63 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractPotato cyst nematodes hatch in response to hatching factors (HF) present in potato root leachate (PRL). The much higher spontaneous hatch (hatch in the absence of potato plants or PRL) of both Globodera rostochiensis and Globodera pallida in sand (32.2 and 21.1%, respectively) compared to in vitro (6.0 and 4.8%) experiments suggested the presence of other hatching factor-producing organisms in the non-sterile sand. When sterile PRL (from aseptically cultured microplants) and non-sterile PRL (from aseptically cultured microplants grown in the presence of tuber washings) samples were collected and assayed for hatching activity, the in vitro hatch of both PCN species but particularly of G. pallida was greater in non-sterile PRL. When these samples were fractionated on Sephadex G-10 by low pressure liquid chromatography and the fractions tested for hatching activity, the non-sterile PRL produced more hatching factors (HF) than the sterile PRL; in the fractionated sterile PRL only one significant HF (active towards G. pallida) was observed, compared to six (towards G. pallida) and three (towards G. rostochiensis) HF from the non-sterile PRL, with two HF being active towards both species. The non-sterile PRL appeared to produce more hatching factor stimulants (HS) and fewer hatch inhibitors (HI) than the sterile PRL. These results suggest that soil micro-organisms play an important role in the production of hatching chemicals and it is proposed that the differences in HF profiles between sterile and non-sterile PRL were due, at least in part, to increased HS production in the non-sterile PRL.


Nematology ◽  
2007 ◽  
Vol 9 (5) ◽  
pp. 719-729 ◽  
Author(s):  
Patrick Haydock ◽  
Peter Jones ◽  
Ken Devine ◽  
Thomas Deliopoulos

AbstractSuccessful mycorrhization of potato plants cv. Golden Wonder was achieved with three commercial preparations of arbuscular mycorrhizal fungi (AMF): Vaminoc (mixed-isolate inoculum) and two of its components, Glomus intraradices and Glomus mosseae. Potato cyst nematode hatching assays were conducted on the potato root leachate (PRL) produced by inoculated and non-inoculated potato plants to examine the effect of AMF inoculation on the hatching response of the two PCN species, Globodera rostochiensis and G. pallida. The overall hatch response of G. rostochiensis to the potato root leachate was greater than G. pallida. Root leachates from Vaminoc- and G. mosseae-inoculated plants were found to stimulate the hatch of G. pallida in the first 3 weeks after shoot emergence. Fractionation of root leachates with standardised carbon content by Sephadex G-10 chromatography revealed multiple AMF effects on hatching factor (HF) production. Root leachates from Vaminoc-inoculated plants contained markedly more G. pallida-active HF than all other treatments; by contrast, PRL from the three AMF treatments exhibited little variation in the quantity of G. rostochiensis-active HF produced. Several HF were PCN species-specific or species-selective, with those resolved from the G. intraradices and G. mosseae PRL profiles exhibiting an apparent preference for G. rostochiensis rather than G. pallida. Mycorrhization also significantly increased the root dry weight of plants.


Parasitology ◽  
1985 ◽  
Vol 90 (3) ◽  
pp. 471-483 ◽  
Author(s):  
P. C. Fox ◽  
H. J. Atkinson

The potential of antigenic differences for discriminating pathotypes of the potato cyst nematodes Globodera pallida and G. rostochiensis has been examined by the use of an antiserum raised to a homogenate of potato cyst nematode larvae. Species-specific antigens were detected among reference pathotypes but more variability was detected among field populations, and cluster analysis was used to interpret the precipitation are pattern produced by Laurell crossed-immunoelectrophoresis. A division into species was seen with this analysis but no definite pathotype groupings were detected. Cross-reaction with other cyst-nematode species was limited to general non-specific precipitation. The antigens were all proteinaceous, did not arise from micro-organisms within the cyst and were mainly hydrophilic with an acidic isoelectric point. Peptidase and acid phosphatase activity was detected in some precipitation arcs but this was not species specific.


Plant Disease ◽  
2021 ◽  
Author(s):  
Syamkumar Sivasankara Pillai ◽  
Louise-Marie Dandurand

Steroidal glycoalkaloids (SGAs) are phytoanticipins found in solanaceous crops that act as the first line of chemical defense against pathogen attacks. Solanum sisymbriifolium, a trap crop for potato cyst nematodes, has been shown to effectively reduce populations of Globodera pallida. Solanum sisymbriifolium contains α- solamargine and other solasodine type glycoalkaloids that may contribute to plant defenses. The current study evaluated the influence of solanaceous SGAs on G. pallida hatch, development, and reproduction. Exposure to α- solamargine and α- solamarine reduced G. pallida hatch by 65 % and 87 % respectively. Exposure of G. pallida cysts with the glycoalkaloids α- solamargine and solasodine significantly reduced infection in susceptible potato Russet Burbank by 98 and 94 % compared to the control. Exposure of cysts to either solasodine or solamargine significantly reduced reproduction of G. pallida on Russet Burbank by 99 % compared to the control. The study demonstrated the deleterious effect of SGAs on G. pallida hatch, infection, and reproduction.


Parasitology ◽  
1987 ◽  
Vol 95 (2) ◽  
pp. 421-428 ◽  
Author(s):  
A. Schots ◽  
J. Bakker ◽  
F. J. Gommers ◽  
L. Bouwman-Smits ◽  
E. Egberts

SUMMARYTwo major groups of heat-stable proteins have been purified by heat denaturation from homogenates of eggs of the potato-cyst nematodes Globodera rostochiensis and G. pallida. SDS-polyacrylamide gel electrophoresis of protein homogenates from 6 G. rostochiensis populations and 7 G. pallida populations revealed 2 bands specific for G. rostochiensis and 3 bands specific for G. pallida. Two-dimensional electrophoresis showed that the 2 bands specific for G. rostochiensis consisted of 2 polypeptides differing slightly in isoelectric point, as did one of the bands specific for G. pallida. Conventional antisera made against protein homogenates of either Globodera species showed a complete cross-reaction with the species-specific proteins. The perspectives of the differences in protein composition between G. rostochiensis and G. pallida, established in this study, for a quantitative differentiation of mixed field populations of the two Globodera species, involving monoclonal antibodies, are discussed.


Nematology ◽  
2017 ◽  
Vol 19 (4) ◽  
pp. 389-402 ◽  
Author(s):  
Claire Wood ◽  
David M. Kenyon ◽  
Julia M. Cooper

The ability of isothiocyanates to suppressGlobodera pallidawas evaluated throughin vitroassays. Several isothiocyanates increased juvenile mortality, the most effective being allyl isothiocyanate, which caused 100% mortality at both 25 and 50 ppm after 72 and 24 h exposure, respectively. In a hatching assay, allyl isothiocyanate was able to suppress hatch; in addition, replenishing allyl isothiocyanate every 3 days increased hatch suppression, and viability staining indicated that egg mortality was increased. Allyl isothiocyanate above concentrations of 50 ppm significantly affected both hatch suppression and mortality. Differing effects of isothiocyanates onG. pallidasuggest that their toxicity depends on the pest of interest and this study shows that allyl isothiocyanate is a good candidate for the control of potato cyst nematodes using biofumigation.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 216
Author(s):  
Aouicha Djebroune ◽  
Gahdab Chakali ◽  
Eugénia de Andrade ◽  
Maria João Camacho ◽  
Leidy Rusinque ◽  
...  

Morphological and molecular studies were conducted to characterize the specific identity of 36 isolates of potato cyst nematodes (PCNs) recovered from soil samples collected in several potato producing areas of Algeria. Morphometric data revealed that 44% of isolates contained Globodera pallida alone, 28% contained Globodera rostochiensis alone and 28% mixtures of the two species. Morphometric values of cysts and second-stage juveniles were generally distributed with slight differences in the expected ranges for both Globodera species. Inter- and intraspecific morphometric variability in nematode isolates was noted. Molecular analysis using conventional multiplex PCR with species-specific primers and TaqMan real-time PCR confirmed the morphological identification. In addition, the distribution of both potato cyst nematode species throughout various parts of the country was investigated. In the central areas, the isolates of G. pallida alone dominate, whereas isolates of G. rostochiensis alone are more frequent in the southern areas. In the eastern regions, mixed isolates are more representative. Most isolates examined in the western areas are mixtures of the two species or G. rostochiensis alone. Comparatively, G. pallida remains the most widely distributed species in its geographic range. This study confirms the presence of two PCN species, G. pallida and G. rostochiensis, in Algeria and provides additional information on their biogeographic distribution.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 184
Author(s):  
John Wainer ◽  
Quang Dinh

The scope of this paper is limited to the taxonomy, detection, and reliable morphological and molecular identification of the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. It describes the nomenclature, hosts, life cycle, pathotypes, and symptoms of the two species. It also provides detailed instructions for soil sampling and extraction of cysts from soil. The primary focus of the paper is the presentation of accurate and effective methods to identify the two principal PCN species.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0241256
Author(s):  
Daniela Vallejo ◽  
Diego A. Rojas ◽  
John A. Martinez ◽  
Sergio Marchant ◽  
Claudia M. Holguin ◽  
...  

Potato cyst nematodes (PCN) from the genus Globodera spp. cause major losses in the potato (Solanum tuberosum) industry worldwide. Despite their importance, at present little is known about the status of this plant pathogen in cultivated potatoes in Colombia. In this study, a total of 589 samples collected from 75 geographic localities in nine potato producing regions of Colombia (Cundinamarca, Boyacá, Antioquia, Nariño, Santander, Norte de Santander, Tolima, Caldas and Cauca) were assayed for the presence of potato cyst nematodes. Fifty-seven percent of samples tested positive for PCN. Based on phylogenetic analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rRNA gene and D2-D3 expansion segments of the 28S rRNA gene, all populations but one were identified as Globodera pallida. Sequences of G. pallida from Colombia formed a monophyletic group closely related to Peruvian populations, with the lowest average number of nucleotide substitutions per site (Dxy = 0.002) and net nucleotide substitutions per site (Da = 0.001), when compared to G. pallida populations from Europe, South and North America. A single sample formed a well-supported subclade along with G. rostochiensis and G. tabacum from Japan, USA and Argentina. To our knowledge this is the first comprehensive survey of Globodera populations from Colombia that includes genetic data. Our findings on species diversity and phylogenetic relationships of Globodera populations from Colombia may help elucidate the status and distribution of Globodera species, and lead to the development of accurate management strategies for the potato cyst nematodes.


Sign in / Sign up

Export Citation Format

Share Document