scholarly journals Integrative Morphometric and Molecular Approach to Update the Impact and Distribution of Potato Cyst Nematodes Globodera rostochiensis and Globodera pallida (Tylenchida: Heteroderidae) in Algeria

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 216
Author(s):  
Aouicha Djebroune ◽  
Gahdab Chakali ◽  
Eugénia de Andrade ◽  
Maria João Camacho ◽  
Leidy Rusinque ◽  
...  

Morphological and molecular studies were conducted to characterize the specific identity of 36 isolates of potato cyst nematodes (PCNs) recovered from soil samples collected in several potato producing areas of Algeria. Morphometric data revealed that 44% of isolates contained Globodera pallida alone, 28% contained Globodera rostochiensis alone and 28% mixtures of the two species. Morphometric values of cysts and second-stage juveniles were generally distributed with slight differences in the expected ranges for both Globodera species. Inter- and intraspecific morphometric variability in nematode isolates was noted. Molecular analysis using conventional multiplex PCR with species-specific primers and TaqMan real-time PCR confirmed the morphological identification. In addition, the distribution of both potato cyst nematode species throughout various parts of the country was investigated. In the central areas, the isolates of G. pallida alone dominate, whereas isolates of G. rostochiensis alone are more frequent in the southern areas. In the eastern regions, mixed isolates are more representative. Most isolates examined in the western areas are mixtures of the two species or G. rostochiensis alone. Comparatively, G. pallida remains the most widely distributed species in its geographic range. This study confirms the presence of two PCN species, G. pallida and G. rostochiensis, in Algeria and provides additional information on their biogeographic distribution.

Nematology ◽  
2017 ◽  
Vol 19 (8) ◽  
pp. 883-889 ◽  
Author(s):  
Maria J. Camacho ◽  
Filomena Nóbrega ◽  
Arlindo Lima ◽  
Manuel Mota ◽  
Maria L. Inácio

The potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida pose one of the greatest threats to potato crops worldwide and are subject to strict quarantine regulations in many countries. The identification of these Globodera species based on morphology may be ambiguous due to the variability of the main morphological features and the overlapping of the standard parameters in these two species; thus, confirmation via molecular methods is recommended. Multiplex PCR with species-specific primers (ITS5/PITSp4 + PITSr3) allows both species to be distinguished. However, despite the development of molecular identification methods, the morphological approach remains useful as a complementary diagnostic technique. In this work, we report results of morphological and molecular analyses that were carried out in two Globodera species from Portuguese potato fields. The average morphometric values of 40 cysts and 40 second-stage juveniles were generally within the expected ranges for G. pallida and G. rostochiensis with some variations noted. Molecular analysis with multiplex PCR confirmed the morphometric identification. The present results confirmed the occurrence of two potato cyst nematode species, G. rostochiensis and G. pallida. Surprisingly, the analysis of soils from Portuguese potato fields detected a greater number of samples infested with G. pallida, which is contrary to expectation as G. rostochiensis has been considered the most widespread species in Portugal. The distinction between the two species is therefore essential in order to detect their presence in the country with a view to re-evaluating the control measures implemented so far and adopting more effective practices.


Nematology ◽  
2015 ◽  
Vol 17 (9) ◽  
pp. 1105-1111 ◽  
Author(s):  
Vincas Būda ◽  
Rasa Čepulytė-Rakauskienė

Two behavioural assays were carried out: one on the attraction of potato cyst nematodes (PCN), Globodera rostochiensis and G. pallida, to solanaceae-specific secondary metabolite α-solanine, the other on the effect of ZnSO4 (a compound known to suppress chemoreceptors). The first assay demonstrated that α-solanine was attractive to second-stage juveniles (J2) of PCN; G. pallida was attracted to concentrations of 10−4 M and 10−5 M, whereas G. rostochiensis was attracted to 10−5 M. Globodera pallida reacted faster than G. rostochiensis to the same concentration of α-solanine. As α-solanine is produced by host plants of PCN, this compound is attributed to kairomones. The response to α-solanine of nematodes pre-exposed to a 3 mM ZnSO4 solution was significantly suppressed compared to that of water control. The effect was observed throughout the whole testing period (30 min). This is the first evidence that both α-solanine and ZnSO4 can affect the behaviour of hatched J2 of PCN.


Parasitology ◽  
1985 ◽  
Vol 90 (3) ◽  
pp. 471-483 ◽  
Author(s):  
P. C. Fox ◽  
H. J. Atkinson

The potential of antigenic differences for discriminating pathotypes of the potato cyst nematodes Globodera pallida and G. rostochiensis has been examined by the use of an antiserum raised to a homogenate of potato cyst nematode larvae. Species-specific antigens were detected among reference pathotypes but more variability was detected among field populations, and cluster analysis was used to interpret the precipitation are pattern produced by Laurell crossed-immunoelectrophoresis. A division into species was seen with this analysis but no definite pathotype groupings were detected. Cross-reaction with other cyst-nematode species was limited to general non-specific precipitation. The antigens were all proteinaceous, did not arise from micro-organisms within the cyst and were mainly hydrophilic with an acidic isoelectric point. Peptidase and acid phosphatase activity was detected in some precipitation arcs but this was not species specific.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0241256
Author(s):  
Daniela Vallejo ◽  
Diego A. Rojas ◽  
John A. Martinez ◽  
Sergio Marchant ◽  
Claudia M. Holguin ◽  
...  

Potato cyst nematodes (PCN) from the genus Globodera spp. cause major losses in the potato (Solanum tuberosum) industry worldwide. Despite their importance, at present little is known about the status of this plant pathogen in cultivated potatoes in Colombia. In this study, a total of 589 samples collected from 75 geographic localities in nine potato producing regions of Colombia (Cundinamarca, Boyacá, Antioquia, Nariño, Santander, Norte de Santander, Tolima, Caldas and Cauca) were assayed for the presence of potato cyst nematodes. Fifty-seven percent of samples tested positive for PCN. Based on phylogenetic analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rRNA gene and D2-D3 expansion segments of the 28S rRNA gene, all populations but one were identified as Globodera pallida. Sequences of G. pallida from Colombia formed a monophyletic group closely related to Peruvian populations, with the lowest average number of nucleotide substitutions per site (Dxy = 0.002) and net nucleotide substitutions per site (Da = 0.001), when compared to G. pallida populations from Europe, South and North America. A single sample formed a well-supported subclade along with G. rostochiensis and G. tabacum from Japan, USA and Argentina. To our knowledge this is the first comprehensive survey of Globodera populations from Colombia that includes genetic data. Our findings on species diversity and phylogenetic relationships of Globodera populations from Colombia may help elucidate the status and distribution of Globodera species, and lead to the development of accurate management strategies for the potato cyst nematodes.


2011 ◽  
Vol 50 (No. 2) ◽  
pp. 70-74 ◽  
Author(s):  
P. Sedlák ◽  
M. Melounová ◽  
S. Skupinová ◽  
P. Vejl ◽  
J. Domkářová

Potato cyst nematodes (PCN) are the big problem in worldwide planting of potatoes and another Solanaceous plants. Identification of individual pathotypes according to international scheme is very demanding but a very important part of the phytosanitary process to control these pests. Molecular genetic identification of different plant and animal species or individuals is a very interesting way at the present time and let’s hope that it will be important in future. This report presents results of the RAPD study of nine different real PCN populations. There were five Globodera rostochiensis populations and four G. pallida populations. Pathotypes Ro2, Ro2/3, Ro4, Ro5, Pa2 and Pa3 were from European populations; population Ro1 and X were of Czech provenance. Genetics variable of these populations was described by a set of six decameric primers (OPA 07, OPG 03, OPG 05, OPG 08, OPG 10 and OPG 13). Genetic dissimilarity was by Gel Manager for Windows evaluated. Detectable differences behind all populations were found and the dendrogram was compiled. The unknown population X was sorted into group of Globodera pallida species subgroup of Pa2 consequently.


2010 ◽  
Vol 46 (No. 4) ◽  
pp. 171-180 ◽  
Author(s):  
O. Douda ◽  
M. Zouhar ◽  
E. Nováková ◽  
J. Mazáková ◽  
P. Ryšánek

Potato cyst nematodes (Globodera rostochiensis, Globodera pallida) remain a key pest in the main potato growing regions of the Czech Republic. Due to difficult direct management and presence of diverse pathotypes attacking different potato cultivars the rapid and reliable diagnostics is of crucial importance. Currently, efforts are aimed at a description of different pathotypes based on DNA analysis. The main objective of this study was to evaluate the homogeneity of sequences of D2/D3 segments of the 28S rDNA gene obtained from 3 populations of G. rostochiensis and 5 populations of G. pallida and estimate their value for diagnostic purposes. PCR amplification yielded a single fragment of the length of 700 bp approximately in all populations. The alignment score of the vast majority of all pair comparisons of G. rostochiensis and G. pallida populations varied from 98 to 99. In total 14 point deletions and 3 substitutions were observed. The variability of D2/D3 segments of potato cyst nematodes is rather low and this DNA region can be used for diagnostics on a species level because more differences were found after comparing with G. tabacum and G. millefolii sequences obtained from Gene Bank; however the applicability of D2/D3 sequences to routine diagnostics of potato cyst nematodes could be complicated by its similarity to corresponding sequences of the nematode G. artemisiae.


Nematology ◽  
2001 ◽  
Vol 3 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Andrew Warry ◽  
Rosane Curtis ◽  
Andrew Porter ◽  
Luca Fioretti ◽  
Patrick Haydock

AbstractA full length cDNA clone was isolated by screening a mixed stage Globodera pallida expression library using the monospecific polyclonal antibody IACR-PC320. Sequence comparison indicated that the predicted 332 amino acid protein encoded by the cDNA was a member of the annexin gene family named gp-nex and very similar to annexins found in other nematode species. Annexins are calcium-dependent phospholipid binding proteins characterised by four repeated domains approximately 70 amino acids in length. The predicted amino acid sequence of the protein did not contain an N-terminal secretion signal peptide; however, the protein was shown to be present in excretory/secretory products from G. pallida second stage juveniles treated with the neurotransmitter 5 methoxy-N, N dimethyl tryptamine. Gp-nex encodes a protein of 35 kDa and was immunolocalised in the amphids, genital primordium and in the constraining muscles above and below the metacorpus pump chamber of G. pallida second stage juveniles. It is also present in eggs and adult females of the two species of the potato cyst nematodes.


Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 335-342 ◽  
Author(s):  
Aileen Ryan ◽  
Peter Jones

AbstractComparison of potato root leachates (PRL) collected from the roots of mycorrhizal (using the mixed-isolate inoculum, Vaminoc) and non-mycorrhizal potato cv. Golden Wonder confirmed that mycorrhization caused a significant increase in hatching activity towards Globodera pallida but not G. rostochiensis. After fractionating the leachates by low pressure molecular exclusion/anion exchange liquid chromatography, several potato cyst nematode (PCN) species-specific hatching factors (HF) were found only in PRL from mycorrhizal plants. Leachate from mycorrhizal plants also contained more of several of those HF common to PRL from both mycorrhizal and non-mycorrhizal plants. Significantly more hatching factor stimulants (HS) active towards both PCN species were found in the PRL from mycorrhizal than from non-mycorrhizal plants; several HS were specific to mycorrhizal plants. No differences (quantitative or qualitative) were observed in hatching inhibitor (HI) levels between PRL from mycorrhizal and non-mycorrhizal plants. Mycorrhization of potato plants resulted in a 20% increase in carbon but a 48% decrease in nitrogen concentrations of the PRL compared to that from the non-mycorrhizal plants.


Parasitology ◽  
1993 ◽  
Vol 107 (5) ◽  
pp. 567-572 ◽  
Author(s):  
J. Roosien ◽  
P. M. Van Zandvoort ◽  
R. T. Folkertsma ◽  
J. N. A. M. Rouppe Van Der Voort ◽  
A. Goverse ◽  
...  

SUMMARYRandom amplified polymorphic DNA (RAPD) offers a potential basis for the development of a diagnostic assay to differentiate the potato cyst nematode species Globodera rostochiensis and G. pallida. Nine decamer primers have been tested for their ability to amplify species-specific DNA sequences. Primer OPG-05 produced 2 discrete DNA fragments, which were consistently present in 5 G. rostochiensis populations and absent in 5 G. pallida populations. These fragments were detectable in single females as well as in single 2nd-stage juveniles. Their amplification is extremely efficient, and reproducible over a wide range of template concentrations. One-fifth of a single juvenile is sufficient to generate reproducible RAPD markers. The amplification from single juveniles requires no DNA isolation. The use of a crude homogenate does not impair the polymerase chain reaction.


Nematology ◽  
2003 ◽  
Vol 5 (1) ◽  
pp. 55-63 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractPotato cyst nematodes hatch in response to hatching factors (HF) present in potato root leachate (PRL). The much higher spontaneous hatch (hatch in the absence of potato plants or PRL) of both Globodera rostochiensis and Globodera pallida in sand (32.2 and 21.1%, respectively) compared to in vitro (6.0 and 4.8%) experiments suggested the presence of other hatching factor-producing organisms in the non-sterile sand. When sterile PRL (from aseptically cultured microplants) and non-sterile PRL (from aseptically cultured microplants grown in the presence of tuber washings) samples were collected and assayed for hatching activity, the in vitro hatch of both PCN species but particularly of G. pallida was greater in non-sterile PRL. When these samples were fractionated on Sephadex G-10 by low pressure liquid chromatography and the fractions tested for hatching activity, the non-sterile PRL produced more hatching factors (HF) than the sterile PRL; in the fractionated sterile PRL only one significant HF (active towards G. pallida) was observed, compared to six (towards G. pallida) and three (towards G. rostochiensis) HF from the non-sterile PRL, with two HF being active towards both species. The non-sterile PRL appeared to produce more hatching factor stimulants (HS) and fewer hatch inhibitors (HI) than the sterile PRL. These results suggest that soil micro-organisms play an important role in the production of hatching chemicals and it is proposed that the differences in HF profiles between sterile and non-sterile PRL were due, at least in part, to increased HS production in the non-sterile PRL.


Sign in / Sign up

Export Citation Format

Share Document