Caenorhabditis elegans as a model for plant-parasitic nematodes

Nematology ◽  
2007 ◽  
Vol 9 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Peter Urwin ◽  
Catherine Lilley ◽  
Joana Costa

AbstractMany studies on aspects of the biology of plant-parasitic nematodes can be facilitated by using the information and resources available for the model species Caenorhabditis elegans. Comparative genomics of shared processes can provide insights into plant-parasitic nematode biology that would otherwise be intractable. In this article we consider some of the resources available for C. elegans. We describe the practical utility of C. elegans and the use of available information to facilitate the characterisation of neurobiological processes in plant-parasitic nematodes.

1999 ◽  
Vol 73 (1) ◽  
pp. 67-71 ◽  
Author(s):  
P. Mendoza de Gives ◽  
K.G. Davies ◽  
M. Morgan ◽  
J.M. Behnke

Populations of Pasteuria penetrans isolated from root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Heterodera spp.) were tested for their ability to adhere to a limited selection of sheathed and exsheathed animal parasitic nematodes, free living nematodes, including Caenorhabditis elegans wild type and several srf mutants, and plant parasitic nematodes. The attachment of spores of Pasteuria was restricted and no spores were observed adhering to any of the animal parasitic nematodes either with or without their sheath or to any of the free living nematodes including C. elegans and the srf mutants. All spore attachment was restricted to plant parasitic nematodes; however, spores isolated from cyst nematodes showed the ability to adhere to other genera of plant parasitic nematodes which was not the case with spores isolated from root-knot nematodes. The results are discussed in relationship to cuticular heterogeneity.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160942 ◽  
Author(s):  
Jinshui Zheng ◽  
Donghai Peng ◽  
Ling Chen ◽  
Hualin Liu ◽  
Feng Chen ◽  
...  

Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor . We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans , the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants.


Nematology ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Fouad Mokrini ◽  
Salah-Eddine Laasli ◽  
Youssef Karra ◽  
Aicha El Aissami ◽  
Abdelfattah A. Dababat

Summary Saffron (Crocus sativus) fields in Morocco’s Taliouine and Taznakht regions were surveyed between January and April 2018 to study the diversity and incidence of plant-parasitic nematodes and assess the effects of soil physicochemical properties on the nematodes. Fourteen nematode genera were identified in soil and root samples collected from 66 saffron fields. The most common plant-parasitic nematodes in the Taliouine region were Pratylenchus spp. and Helicotylenchus spp. In the Taznakht region, the most common nematodes were Pratylenchus spp., Tylenchorhynchus spp. and Ditylenchus dipsaci. Nematodes, particularly Pratylenchus spp. and Ditylenchus spp., were abundant and frequent throughout the region. Several nematode genera were significantly associated with soil texture and mineral content, indicating that soil properties play an important role in plant-parasitic nematode communities. This description of plant-parasitic nematode assemblages associated with saffron fields in Morocco and their relationship with soil physicochemical properties provides a starting point from which appropriate nematode management strategies can be implemented.


1976 ◽  
Vol 16 (81) ◽  
pp. 588 ◽  
Author(s):  
GR Stirling

Vineyards in all five of South Australia's grapegrowing districts were surveyed for plant parasitic nematodes. Root-knot nematodes (Meloidogyne spp.) occurrcd in four districts, and were present in almost all vineyards with sandy soil in the Riverland, Barossa Valley and Central districts. Four species (M. arenaria, M. hapla, M. incognita and M. javanica) were identified. Citrus nematode (Tylenchulus semipenetrans) was wide-spread in Riverland vineyards, and isolated infestations were found in other districts. Other plant parasitic nematode genera found during the survey were Helicotylenchus, Macroposthonia, Paratrichodorus, Paratylenchus, Prat ylenchus, Tylenchorh ynchus and Xiphinema.


Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 149-153 ◽  
Author(s):  
Claudia M. Holguin ◽  
Xinyuan Ma ◽  
John D. Mueller ◽  
Paula Agudelo

Hoplolaimus columbus is an important nematode pest of soybean in South Carolina and North Carolina. Tolerant cultivars are available for the management of this plant-parasitic nematode; however, variation in the response of soybean cultivars to H. columbus populations has been observed. This variation may be due to the presence of different species or high genetic diversity of H. columbus populations. The objective of this study was to identify the Hoplolaimus spp. present in fields representing the main soybean-growing regions in South Carolina and North Carolina and to examine the genetic variability of these populations. In South Carolina, the only species found associated with soybean was H. columbus but, in North Carolina, H. stephanus was the dominant species. The two species were never found together. Genetic variability analyses of a mitochondrial and a nuclear marker showed that only one haplotype was shared by the H. columbus populations. H. stephanus showed higher genetic variability, with private haplotypes per sampling location. Knowledge of the distribution and genetic variability of these two Hoplolaimus spp. is valuable to growers to determine potentially damaging infestations of these plant-parasitic nematodes in soybean fields.


Nematology ◽  
2017 ◽  
Vol 19 (10) ◽  
pp. 1135-1146 ◽  
Author(s):  
Jan H. Schmidt ◽  
Maria R. Finckh ◽  
Johannes Hallmann

Soil conservation is one of the major challenges for agriculture in the 21st century. For this reason, non-inversion tillage systems including subsidiary crops have become popular over the last three decades in Europe. However, the adoption of new agricultural practices may change the diversity and abundance of certain pests and diseases. For example, plant-parasitic nematodes that are major threats towards cultivated plants may be promoted if good hosts, such as certain subsidiary crops and weeds, occur more frequently. The indigenous plant-parasitic nematode fauna under organic farming systems is already adapted to diverse crop rotations and usually dominated by nematodes with broad host ranges. These may be further enhanced in organic farming systems if non-inversion tillage is introduced, which generally increases the abundance and biomass of certain weeds. We evaluated the early effects of non-inversion tillage and subsidiary crops in an organic wheat-potato rotation on plant-parasitic nematodes in two field experiments in two successive years. The total densities of plant-parasitic nematodes increased from an initial 1260 nematodes (100 ml soil)−1 at the start of the experiment to 1850 and 1700 nematodes (100 ml soil)−1 after wheat under non-inversion and conventional tillage, respectively. Plant-parasitic nematode densities then decreased on average to 1100 and 560 nematodes (100 ml soil)−1 after subsidiary crops and potatoes, respectively. Parasitic nematode densities tended to be higher under non-inversion than conventional tillage, except where oilseed radish and black oats had been used as cover crops. For the latter, no differences between tillage treatments occurred. In the second experiment, about 1700 free-living nematodes (100 ml soil)−1 were found under conventional tillage without mulch while under reduced tillage with mulch their numbers were significantly higher at 3100 nematodes (100 ml soil)−1. We conclude that an appropriate choice of subsidiary crops can be an important management factor for the long term sustainability of non-inversion tillage systems.


Plant Disease ◽  
2015 ◽  
Vol 99 (7) ◽  
pp. 982-993 ◽  
Author(s):  
Yongsan Zeng ◽  
Weimin Ye ◽  
James Kerns ◽  
Lane Tredway ◽  
Samuel Martin ◽  
...  

The near-full-length 18S ribosomal DNA (rDNA) gene and internal transcribed spacer 1 region were amplified and sequenced from 52 nematode populations belonging to 28 representative species in 13 families recovered from turfgrasses in North Carolina (38 populations) and South Carolina (14 populations). This study also included 13 nematode populations from eight other plant hosts from North Carolina for comparison. Nematodes were molecularly characterized and the phylogenetic relationships were explored based on 18S rDNA sequences. Phylogenetic analysis using Bayesian inference was performed using five groups of the plant-parasitic nematode populations Tylenchids, Criconematids, Longidorids, Xiphinematids, and Trichodorids. The 65 nematode populations were clustered correspondingly within appropriate positions of 13 families, including Belonolaimidae, Caloosiidae, Criconematidae, Dolichodoridae, Hemicycliophoridae, Hoplolaimidae, Heteroderidae, Longidoridae, Meloidogynidae, Paratylenchidae, Pratylenchidae, Telotylenchidae, and Trichodoridae. This study confirms previous morphological-based identification of the plant-parasitic nematode species found in turfgrasses and provides a framework for future studies of plant-parasitic nematodes associated with turfgrasses based upon DNA sequences and phylogenetic relationships.


Parasitology ◽  
2004 ◽  
Vol 128 (S1) ◽  
pp. S49-S70 ◽  
Author(s):  
J. S. GILLEARD

There is increasing interest in the use of the free-living nematode Caenorhabditis elegans as a tool for parasitic nematode research and there are now a number of compelling examples of its successful application. C. elegans has the potential to become a standard tool for molecular helminthology researchers, just as yeast is routinely used by molecular biologists to study vertebrate biology. However, in order to exploit C. elegans in a meaningful manner, we need a detailed understanding of the extent to which different aspects of C. elegans biology have been conserved with particular groups of parasitic nematodes. This review first considers the current state of knowledge regarding the conservation of genome organisation across the nematode phylum and then discusses some recent evolutionary development studies in free-living nematodes. The aim is to provide some important concepts that are relevant to the extrapolation of information from C. elegans to parasitic nematodes and also to the interpretation of experiments that use C. elegans as a surrogate expression system. In general, examples have been specifically chosen because they highlight the importance of careful experimentation and interpretation of data. Consequently, the focus is on the differences that have been found between nematode species rather than the similarities. Finally, there is a detailed discussion of the current status of C. elegans as a heterologous expression system to study parasite gene function and regulation using successful examples from the literature.


2017 ◽  
Vol 54 (2) ◽  
pp. 179-182
Author(s):  
F. W. Kornobis ◽  
U. Sobczyńska

SummaryDuring a survey on the occurrence of the plant parasitic nematodes of the family Longidoridae in Poland, 925 soil samples were taken. Longidorus distinctus was present in 10 (1.08 %) of these samples. In this Research Note we provide: 1) distribution map of these populations, 2) morphometric data, 3) sequence data for D2-D3 28S rDNA and (partial)18S-ITS1 -5.8S(partial) markers and 4) LdistFOR primer (5′-GGCTGTAAAGATATATGCGT-3’) effective in obtaining ITS1 sequence for the species. Morphometric similarities and dissimilarities with data on other published populations are discussed.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 471-475 ◽  
Author(s):  
Enrique E. Pérez ◽  
Edwin E. Lewis

A 2-year experiment was conducted to test suppression of plant-parasitic nematodes on English boxwood using entomopathogenic nematodes and 3.5% thyme oil formulated as Promax. Treatments were Steinernema riobrave formulated as BioVector and S. feltiae formulated as Nemasys, both applied at a rate of 2.5 billion infective juveniles/ha, thyme oil at rate of 9.3 liters/ha, and nontreated control. In the 2001 season, treatment with S. feltiae reduced (P ≤ 0.05) the population growth of Tylenchorhynchus sp. 7 days after treatment and Hoplolaimus sp. 30 and 60 days after treatment. Treatment with S. riobrave reduced (P ≤ 0.05) the population growth of all plant-parasitic nematode species at all sampling dates, with the exception of Mesocriconema sp. 30 days after treatment and Tylenchorhynchus sp. and Rotylenchus buxophilus 60 days after treatment. Treatment with thyme oil reduced (P ≤ 0.05) the population growth of all plant-parasitic nematode genera at all sampling dates except Tylenchorhynchus sp. and R. buxophilus 60 days after treatment. In the 2002 season, treatment with S. feltiae had no effect on nematode population growth. Treatment with S. riobrave reduced (P ≤ 0.05) the population growth of R. buxophilus 7 days after treatment, and all plant-parasitic nematodes 30 and 60 days after treatment except Hoplolaimus sp. 30 days after treatment and Mesocriconema sp. 60 days after treatment. Treatment with thyme oil reduced (P ≤ 0.05) the population growth at all sampling dates of plant-parasitic nematodes except Mesocriconema sp. 60 days after treatment.


Sign in / Sign up

Export Citation Format

Share Document