Better Greenhouse Gas Emissions Accounting for Biofuels: A Key to Biofuels Sustainability

Climate Law ◽  
2016 ◽  
Vol 6 (3-4) ◽  
pp. 279-295
Author(s):  
Taotao Yue ◽  
Marjan Peeters

Biofuels are promoted by governments as a replacement for fossil fuels in the transport sector. However, according to current scientific evidence, their use does not necessarily significantly reduce greenhouse gas emissions. This article examines issues related to the regulation of biofuels’ life-cycle ghg emissions. It finds that a regulatory gap exists at the international level, whilst regulation at the domestic level faces limits or is insufficient to fill this gap. It remains to be seen whether, taking into account the scientific complexities, coherent international rules for biofuels will be adopted. Until then, a polycentric regulatory approach on the use of biofuels, which addresses the sustainability problem at multiple scales, thereby enabling experimentation and cross-influence among different levels of standard-setting, will remain in place across the world. The current approach entails a potentially beneficial learning process on how to properly regulate biofuels. However, there is a risk that national regulators will promote biofuels without knowing or accounting exactly for the extent to which they contribute to greenhouse gas reductions.

WARTA ARDHIA ◽  
2014 ◽  
Vol 40 (1) ◽  
pp. 1-18
Author(s):  
Suyono Wiryoatmojo

One of the environmental problrms facing the world today is the phenomenon of global warming that is caused by greenhouse gas emissions. Many human activities that cause greenhouse gas emissions that cause global warming, among others, is the consumption of energy derived from fossil fuels, including fuels for the transport sector, particularly air transport. This research conducted the calculation of greenhouse gas emissions produced by aircraft operation in Indonesia in 2012 and the predictions of greenhouse gases up to 2030. The calculation refers to the emission inventory Guidebook 2013, and following the procedure has been set by the International Civil Aviation Organization (ICAO). Based on the calculation results showed that aircraft greenhouse gas emissions in Indonesia in 2012 dominated by C02 gas that is equal to 8145 kTon (99.7%) while the hydrocarbon gas emissions of 1.04 kTon. By 2030, greenhouse das emissions aircraft in Indonesia is expected to reach 16814 kTon.Salah satu permasalahan lingkungan yang dihadapi dunia Saat ini adalah adanya fenomena pemanasan global yang antara lain disebabkan oleh emisi gas rumah kaca. Aktifitas manusia yang banyak menyebabkan emisi gas rumah kaca penyebab pemanasan global antara lain adalah konsumsi energi yang berasal dari bahan bakar fosil termasuk bahan bakar untuk sektor transportasi khususnya transportasi udara. Dalam penelitian ini dilakukan perhitungan emisi Gas Rumah Kaca yang dihasilkan pesawat udara di Indonesia pada tahun 2012 dan prediksi gas rumah kaca sampai dengan tahun 2030. Perhitungan dan prediksi emisi gas rumah kaca pesawat udara pada penelitian ini mengacu pada emission inventory guidebook 2013 dan mengikuti prosedur yang telah ditetapkan oleh Civil Aviation Organization (ICAO). Berdasarkan hasil perhitungan didapatkan hahwa emisi GRK pesawat udara di Indonesia pada tahun 2012 didominasi oleh gas CO2 yaitu sebesar 8.145 kTon (99.7%) sedangkan emisi gas hidrokarbon sebesar 1,04 kTon Pada tahun 2030, emisi gas rumah kaca pesawat udara di Indoneisa diprediksikan mencapai 16.814 kTon.


2018 ◽  
Author(s):  
Angel D. Ramirez ◽  
Danilo Arcentales ◽  
Andrea Boero

Climate change is a serious threat to sustainability. Anthropogenic climate change is due to the accumulation of greenhouse gases (GHG) in the atmosphere beyond natural levels. Anthropogenic GHG emissions are mostly associated with carbon-dioxide (CO2) originated in the combustion of fossil fuels used for heat, power, and transportation. Globally, transportation contributes to 14% of the global GHG emissions. The transport sector is one of the main contributors to the greenhouse gas emissions of Ecuador. In Guayaquil, the road mass transportation system comprises regular buses and the bus rapid transit (BRT) system. Electricity in Ecuador is mostly derived from hydropower, hence incurs relatively low GHG emissions along its life cycle. Therefore, electrification of transport has been seen as an opportunity for mitigation of GHG emissions. In this study, the effect of partial replacement of the bus rapid system fleet is investigated. Feeders have been chosen as the replacement target in five different scenarios. GHG emissions from diesel-based feeders have been calculated using the GREET Fleet Footprint Calculator tool. The GHG emissions associated with the electricity used for transportation is calculated using the life cycle inventory of the electricity generation system of Ecuador. Three energy mix scenarios are used for this purpose. The 2012 mix which had 61% hydropower; the mix of 85% hydropower and the marginal electricity scenario, which supposed the extreme case when the new demand for electricity occurs during peak demand periods. Results indicate that mitigation of GHG emissions is possible for almost all scenarios of percentage fleet replacement and all mix scenarios. Electric buses efficiency and the carbon intensity of the electricity mix are critical for GHG mitigation.


Earth ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 731-745
Author(s):  
Madan B. Regmi

Asia is one of the continents that is the most affected by the impacts of climate change. Asian countries need to take climate actions and mitigate emissions from the urban passenger transport sector. Despite some progress in improving urban mobility in Asian cities, greenhouse gas emissions from the transport sector continue to rise. Policy makers who are responsible for managing mobilities must play a major role in decarbonizing the transport sector. In this context, this paper reviews the efforts of selected Asian countries and cities towards reducing greenhouse gas emissions from the urban transport sector. It will analyze their pledges in the Nationally Determined Contributions submitted to the United Nations Framework Convention on Climate Change and will review their relevant transport sector strategies, policies, and practices. It will also look at trends in transport sector emissions and air pollution in different cities, including the short-term impacts of COVID-19. Lastly, it reviews governance issues and the roles that institutions should play to implement polices to decarbonize transport. Based on this analysis, this paper offers policy suggestions to accelerate actions, enhance cross-sectoral coordination, and move towards carbon neutrality in the transport sector in Asia.


2020 ◽  
Vol 12 (18) ◽  
pp. 7302
Author(s):  
Anne Magdalene Syré ◽  
Florian Heining ◽  
Dietmar Göhlich

The transport sector in Germany causes one-quarter of energy-related greenhouse gas emissions. One potential solution to reduce these emissions is the use of battery electric vehicles. Although a number of life cycle assessments have been conducted for these vehicles, the influence of a transport system-wide transition has not been addressed sufficiently. Therefore, we developed a method which combines life cycle assessment with an agent-based transport simulation and synthetic electric-, diesel- and gasoline-powered vehicle models. We use a transport simulation to obtain the number of vehicles, their lifetime mileage and road-specific consumption. Subsequently, we analyze the product systems’ vehicle production, use phase and end-of-life. The results are scaled depending on the covered distance, the vehicle weight and the consumption for the whole life cycle. The results indicate that the sole transition of drive trains is insufficient to significantly lower the greenhouse gas emissions. However, sensitivity analyses demonstrate that there is a considerable potential to reduce greenhouse gas emissions with higher shares of renewable energies, a different vehicle distribution and a higher lifetime mileage. The method facilitates the assessment of the ecological impacts of complete car-based transportation in urban agglomerations and is able to analyze different transport sectors.


2019 ◽  
Vol 13 (3) ◽  
pp. 486-499
Author(s):  
Maryam Doroodi ◽  
Alireza Mokhtar

Purpose The purpose of this paper is to predict the amount of energy consumption by using a suitable statistical method in some sectors and energy carriers, which has shown a significant correlation with greenhouse gas emissions. Design/methodology/approach After studying the correlation between energy consumption rates in different sectors of energy consumption and some energy carriers with greenhouse gas distribution (CO2, SO2, NOX and SPM), the most effective factors on pollution emission will be first identified and then predicted for the next 20 years (2015 to 2004). Furthermore, to determine the appropriate method for forecasting, two approaches titled “trend analysis” and “double exponential smoothing” will be applied on data, collected from 1967 to 2014, and their capabilities in anticipating will be compared to each other contributing MSD, MAD, MAPE indices and also the actual and projected time series comparison. After predicting the energy consumption in the sectors and energy carriers, the growth rate of consumption in the next 20 years is also calculated. Findings Correlation study shows that four energy sectors (industry sector, agriculture, transportation and household-general-commercial) and two energy carriers (electricity and natural gas) have shown remarkable correlation with greenhouse gas emissions. To predict the energy consumption in mentioned sectors and carriers, it is proven that double exponential smoothing method is more capable in predicting. The study shows that among the demand sectors, the industry will account for the highest consumption rate. Electricity will experience the highest rate among the energy careers. In fact, producing this amount of electricity causes emissions of greenhouse gases. Research limitations/implications Access to the data and categorized data was one of the main limitations. Practical implications By identifying the sectors and energy carriers that have the highest consumption growth rate in the next 20 years, it can be said that greenhouse gas emissions, which show remarkable correlation with these sectors and carriers, will also increase dramatically. So, their stricter control seems to be necessary. On the other hand, to control a particular greenhouse gas, it is possible to focus on the amount of energy consumed in the sectors and carriers that have a significant correlation with this pollutant. These results will lead to more targeted policies to reduce greenhouse gas emissions. Social implications The tendency of communities toward industrialization along with population growth will doubtlessly lead to more consumption of fossil fuels. An immediate aftermath of burning fuels is greenhouse gas emission resulting in destructive effects on the environment and ecosystems. Identifying the factors affecting the pollutants resulted from consumption of fossil fuels is significant in controlling the emissions. Originality/value Such analyses help policymakers make more informed and targeted decisions to reduce greenhouse gas emissions and make safer and more appropriate policies and investment.


2019 ◽  
Vol 11 (5) ◽  
pp. 1234 ◽  
Author(s):  
Hee-Hoon Kim ◽  
Seul-Ye Lim ◽  
Seung-Hoon Yoo

Heat accounts for about one-third of the final energy use and it is mostly produced using fossil fuels in South Korea. Thus, heat production is an important source of greenhouse gas emissions. However, using renewable heat that is directly produced from renewable energy, such as bioenergy, geothermal, or solar heat can save energy and reduce greenhouse gas emissions, rather than transforming conventional fuel into heat. Therefore, an energy policy for renewable heat urgently needs to be established. It is such situations that this paper attempts to assess the consumers’ additional willingness to pay (WTP) or the price premium for renewable heat over heat that is produced from fossil fuels for residential heating. To that end, a nationwide contingent valuation survey of 1000 households was conducted during August 2018. Employing the model allowing for zero WTP values, the mean of the additional WTP or premium for one Gcal of heat produced using renewable energy rather than fossil fuels was estimated to be KRW 3636 (USD 3.2), which is statistically meaningful at the 1% level. This value represents the price premium for renewable heat over heat that is based on fossil fuels. Given that the heat price for residential heating was approximately KRW 73,000 (USD 65.1) per Gcal at the time of the survey, the additional WTP or the price premium corresponds to about 5% of that. When considering that the cost of producing renewable heat is still significantly higher than the cost of producing fossil fuels-based heat, more efforts to lower the production costs of renewable heat as well as financial support of the government for producing and supplying renewable heat are needed to ensure residential consumers’ acceptance of renewable heat.


2020 ◽  
Vol 12 (23) ◽  
pp. 9995
Author(s):  
Henrike Rau ◽  
Joachim Scheiner

The continuous growth in greenhouse gas emissions from the transport sector has led to calls for a sustainability transition that is largely driven by technological means and supply-side measures such as infrastructure and vehicles [...]


2018 ◽  
Vol 10 (9) ◽  
pp. 3025 ◽  
Author(s):  
Ján Ližbetin ◽  
Martina Hlatká ◽  
Ladislav Bartuška

The paper deals with the issue of greenhouse gas emissions that are produced by the road freight transport sector. These emissions affect the structure of the ozone layer and contribute to the greenhouse effect that causes global warming-issues that are closely associated with changing weather patterns and extreme weather events. Attention is drawn to the contradictions linked to FAME (Fatty Acid Methyl Esters) biofuels, namely the fact that although their use generates almost zero greenhouse gas emissions, their production requires high levels of energy consumption. The first part of the paper deals with the theoretical basis of the negative impacts of transport on the environment and the subsequent measurement of the extent of the harmful emissions generated by the road freight transport sector. In the methodical part of the paper, the calculation procedures and declared energy consumption and greenhouse gas emissions generated by transport services are analyzed according to the EN 16258 standard. The experimental part of the paper focuses on the application of the methodology to a specific shipment on a specified transport route, where the total energy consumption and production of greenhouse gas emissions is determined. These calculations are based on comprehensive studies carried out for a particular transport company that assigned the authors the task of determining to what extent the declared energy consumption and greenhouse gas emissions change when the type of fuel used is changed.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 457
Author(s):  
Sergio Peres ◽  
Eduardo Loureiro ◽  
Humberto Santos ◽  
Fabio Vanderley e Silva ◽  
Alexandre Gusmao

Due to climate change problems caused by greenhouse gas emissions generated by fossil fuels and from waste disposition, fuel alternatives for power generation are being extensively researched. Currently, in Brazil and in many countries, wood waste is disposed in landfills. However, due to lignin, one of the major constituents of biomass, which prevents wood waste from suffering microbial degradation, there is no significant mass degradation, even over decades, when landfilled. Hence, landfilling is not a solution to discard wood waste. Hence, one of the solutions to get rid of the great amount of wood waste is to use it as feedstock in waste-to-electricity (WTE) projects. WTE projects are in high demand in the world, as they can replace fossil fuels and they reduce two major environmental problems (greenhouse gas emissions due to the use of fossil fuels and the accumulation of waste in landfills), while generating biofuels and/or electricity. One of the residues that can be used in WTE projects is biomass residue from construction sites (CCbiowaste). CCbiowaste could be converted into gaseous biofuels through pyrolysis or gasification. These gaseous biofuels can be used in Otto engines connected to an electricity generator (gensets) to produce electricity and/or heat (cogeneration applications). Hence, the objective of this research was to characterize (physically, chemically, and energetically) civil construction biomass wastes (CCbiowaste), produced in a residential building construction site in Recife, Brazil, and to use these wastes in a bench-scale gasifier to produce gaseous biofuels at the temperatures of 700 °C, 800 °C, and 900 °C. The gaseous fuels were collected in the gasifier and analyzed in a gas chromatograph equipped with a thermal conductivity detector (TCD) to determine their composition and heating values. The lower heating value (LHV) results varied from 8.07 MJ∙m−3 to 10.74 MJ∙m−3 for 700 °C to 900 °C gasification temperature. These gaseous fuels were tested in an adapted Otto cycle engine connected to an electricity generator to prove the feasibility of this application. The highest total energy per ton of biomass was obtained for mixed wood and Pinus at 900 °C, with approximately 13 GJ∙ton−1. Hence, the use of CCbiowaste can become an option for the reuse of wasted wood instead of simply dumping in a landfill.


Sign in / Sign up

Export Citation Format

Share Document