scholarly journals The Production of Gaseous Biofuels Using Biomass Waste from Construction Sites in Recife, Brazil

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 457
Author(s):  
Sergio Peres ◽  
Eduardo Loureiro ◽  
Humberto Santos ◽  
Fabio Vanderley e Silva ◽  
Alexandre Gusmao

Due to climate change problems caused by greenhouse gas emissions generated by fossil fuels and from waste disposition, fuel alternatives for power generation are being extensively researched. Currently, in Brazil and in many countries, wood waste is disposed in landfills. However, due to lignin, one of the major constituents of biomass, which prevents wood waste from suffering microbial degradation, there is no significant mass degradation, even over decades, when landfilled. Hence, landfilling is not a solution to discard wood waste. Hence, one of the solutions to get rid of the great amount of wood waste is to use it as feedstock in waste-to-electricity (WTE) projects. WTE projects are in high demand in the world, as they can replace fossil fuels and they reduce two major environmental problems (greenhouse gas emissions due to the use of fossil fuels and the accumulation of waste in landfills), while generating biofuels and/or electricity. One of the residues that can be used in WTE projects is biomass residue from construction sites (CCbiowaste). CCbiowaste could be converted into gaseous biofuels through pyrolysis or gasification. These gaseous biofuels can be used in Otto engines connected to an electricity generator (gensets) to produce electricity and/or heat (cogeneration applications). Hence, the objective of this research was to characterize (physically, chemically, and energetically) civil construction biomass wastes (CCbiowaste), produced in a residential building construction site in Recife, Brazil, and to use these wastes in a bench-scale gasifier to produce gaseous biofuels at the temperatures of 700 °C, 800 °C, and 900 °C. The gaseous fuels were collected in the gasifier and analyzed in a gas chromatograph equipped with a thermal conductivity detector (TCD) to determine their composition and heating values. The lower heating value (LHV) results varied from 8.07 MJ∙m−3 to 10.74 MJ∙m−3 for 700 °C to 900 °C gasification temperature. These gaseous fuels were tested in an adapted Otto cycle engine connected to an electricity generator to prove the feasibility of this application. The highest total energy per ton of biomass was obtained for mixed wood and Pinus at 900 °C, with approximately 13 GJ∙ton−1. Hence, the use of CCbiowaste can become an option for the reuse of wasted wood instead of simply dumping in a landfill.

2014 ◽  
Vol 14 (4) ◽  
pp. 1-10 ◽  
Author(s):  
Perry Forsythe ◽  
Grace Ding

Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area), exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation. 


2014 ◽  
Vol 935 ◽  
pp. 138-141
Author(s):  
Zahra Balador ◽  
Zahra Raeisi

Using salvages and reused materials is an effort to conserve energy and other resources, and reduce greenhouse gas emissions; on the other hand, these materials cost a fraction of the price of new. The information generated by this study revealed several useful material management guidelines. Statistical results shows that designers who are educated about these products and how they can be used, are interested in using recycled materials, and can potentially decrease the amount of trash being produced on a much larger level. All information was obtained from product brochures, manufacturer websites, visiting construction sites, statistical analysis and conversations with designers.


2019 ◽  
Vol 13 (3) ◽  
pp. 486-499
Author(s):  
Maryam Doroodi ◽  
Alireza Mokhtar

Purpose The purpose of this paper is to predict the amount of energy consumption by using a suitable statistical method in some sectors and energy carriers, which has shown a significant correlation with greenhouse gas emissions. Design/methodology/approach After studying the correlation between energy consumption rates in different sectors of energy consumption and some energy carriers with greenhouse gas distribution (CO2, SO2, NOX and SPM), the most effective factors on pollution emission will be first identified and then predicted for the next 20 years (2015 to 2004). Furthermore, to determine the appropriate method for forecasting, two approaches titled “trend analysis” and “double exponential smoothing” will be applied on data, collected from 1967 to 2014, and their capabilities in anticipating will be compared to each other contributing MSD, MAD, MAPE indices and also the actual and projected time series comparison. After predicting the energy consumption in the sectors and energy carriers, the growth rate of consumption in the next 20 years is also calculated. Findings Correlation study shows that four energy sectors (industry sector, agriculture, transportation and household-general-commercial) and two energy carriers (electricity and natural gas) have shown remarkable correlation with greenhouse gas emissions. To predict the energy consumption in mentioned sectors and carriers, it is proven that double exponential smoothing method is more capable in predicting. The study shows that among the demand sectors, the industry will account for the highest consumption rate. Electricity will experience the highest rate among the energy careers. In fact, producing this amount of electricity causes emissions of greenhouse gases. Research limitations/implications Access to the data and categorized data was one of the main limitations. Practical implications By identifying the sectors and energy carriers that have the highest consumption growth rate in the next 20 years, it can be said that greenhouse gas emissions, which show remarkable correlation with these sectors and carriers, will also increase dramatically. So, their stricter control seems to be necessary. On the other hand, to control a particular greenhouse gas, it is possible to focus on the amount of energy consumed in the sectors and carriers that have a significant correlation with this pollutant. These results will lead to more targeted policies to reduce greenhouse gas emissions. Social implications The tendency of communities toward industrialization along with population growth will doubtlessly lead to more consumption of fossil fuels. An immediate aftermath of burning fuels is greenhouse gas emission resulting in destructive effects on the environment and ecosystems. Identifying the factors affecting the pollutants resulted from consumption of fossil fuels is significant in controlling the emissions. Originality/value Such analyses help policymakers make more informed and targeted decisions to reduce greenhouse gas emissions and make safer and more appropriate policies and investment.


2019 ◽  
Vol 11 (5) ◽  
pp. 1234 ◽  
Author(s):  
Hee-Hoon Kim ◽  
Seul-Ye Lim ◽  
Seung-Hoon Yoo

Heat accounts for about one-third of the final energy use and it is mostly produced using fossil fuels in South Korea. Thus, heat production is an important source of greenhouse gas emissions. However, using renewable heat that is directly produced from renewable energy, such as bioenergy, geothermal, or solar heat can save energy and reduce greenhouse gas emissions, rather than transforming conventional fuel into heat. Therefore, an energy policy for renewable heat urgently needs to be established. It is such situations that this paper attempts to assess the consumers’ additional willingness to pay (WTP) or the price premium for renewable heat over heat that is produced from fossil fuels for residential heating. To that end, a nationwide contingent valuation survey of 1000 households was conducted during August 2018. Employing the model allowing for zero WTP values, the mean of the additional WTP or premium for one Gcal of heat produced using renewable energy rather than fossil fuels was estimated to be KRW 3636 (USD 3.2), which is statistically meaningful at the 1% level. This value represents the price premium for renewable heat over heat that is based on fossil fuels. Given that the heat price for residential heating was approximately KRW 73,000 (USD 65.1) per Gcal at the time of the survey, the additional WTP or the price premium corresponds to about 5% of that. When considering that the cost of producing renewable heat is still significantly higher than the cost of producing fossil fuels-based heat, more efforts to lower the production costs of renewable heat as well as financial support of the government for producing and supplying renewable heat are needed to ensure residential consumers’ acceptance of renewable heat.


2009 ◽  
Vol 20 (4) ◽  
pp. 533-551 ◽  
Author(s):  
R Saidur ◽  
MA Sattar ◽  
H.H. Masjuki ◽  
M.Y. Jamaluddin

This paper presents an analysis of the greenhouse gas (GHG) emissions from refrigeration equipment. The refrigeration equipments use refrigerants such as chlorofluorocarbons (CFCs) and hydrofluorocarbons HFCs, which are believed to contribute the ozone depletion and global warming. Refrigeration equipment thus contributes indirectly through emission due to electricity consumption and directly due to the emission of refrigerants. Greenhouse gas emissions resulting from the burning of fossil fuels are quantified and presented in this paper. The calculation was carried out based on emissions per unit electricity generated and the type of fuel used. The direct emission of refrigerant was calculated based on emission factor and according to the procedure of Environmental Protection Agency (EPA), USA. A study was conducted to evaluate the refrigerant losses to the atmosphere and the CO2 emission from fossil fuels to generate power to run the refrigeration and air-conditioning systems. In this paper, total appliance annual energy consumption by refrigerator-freezer and air conditioner as well as emission has been estimated for a period of 19 years (1997–2015) using the survey data. Energy savings and emission reductions achievable by raising thermostat set point temperature have been calculated for a period of 10 (i.e. 2005–2015) years.


RSC Advances ◽  
2016 ◽  
Vol 6 (71) ◽  
pp. 66847-66869 ◽  
Author(s):  
L. S. Khuong ◽  
N. W. M. Zulkifli ◽  
H. H. Masjuki ◽  
E. Niza Mohamad ◽  
A. Arslan ◽  
...  

Owing to the growing concern over the depletion of fossil fuels and the rising rate of greenhouse gas emissions which will lead to global warming, many researchers are now dedicated to producing biofuels in order to solve the above-mentioned issues.


Daedalus ◽  
2013 ◽  
Vol 142 (1) ◽  
pp. 26-39 ◽  
Author(s):  
Jon A. Krosnick ◽  
Bo MacInnis

Despite efforts by some congressional legislators to pass laws to limit greenhouse gas emissions and reduce the use of fossil fuels, no such laws have yet been adopted. Is this failure to pass new laws attributable to a lack of public desire for such legislation? Data from national surveys support two answers to this question. First, large majorities of Americans have endorsed a variety of policies designed to reduce greenhouse gas emissions; second, policy support has been consistent across years and across scopes and types of policies. Popular policies include fuel economy and energy-efficiency standards, mandated use of renewable sources, and limitations on emissions by utilities and by businesses more generally. Support for policies has been price sensitive, and the American public appears to have been willing to pay enough money for these purposes to cover their costs. Consistent with these policy endorsements, surveys show that large majorities of Americans believe that global warming has been happening, that it is attributable to human activity, and that future warming will be a threat if unaddressed. Not surprisingly, these beliefs appear to have been important drivers of public support for policies designed to reform energy generation and use. Thus, it seems inappropriate to attribute lack of legislation to lack of public support in these arenas.


Author(s):  
Harry Audus ◽  
Paul Freund

In recent years, the possibility of climate change has begun to be considered seriously. Options available today can help reduce emissions at relatively little overall cost but may be able to achieve only moderate reductions. If it becomes necessary to reduce emissions further, it is likely there will be opportunities for new technologies as well as making greater use of existing ones. Bearing in mind the time required to develop and deploy new energy supply technologies on a large-scale, it is only sensible to adopt a precautionary stance. This requires better understanding of the potential of technologies not yet in widespread use and stimulation of the development and deployment of promising ones. The EEA Greenhouse Gas R&D Programme is working to improve understanding of technologies for reducing greenhouse gas emissions from fossil fuels. This is an example of effective co-operative action between different countries and industries. Membership is worldwide; through this work, members are able to learn about new technologies and share experiences. This paper reviews the work of the IEA Greenhouse Gas R&D Programme. The established options for reducing emissions include improving energy efficiency, substitution of lower-carbon fuels for high-carbon fuels, and introduction of alternative energy sources. If deep reductions in emissions are required, discussion tends to focus on alternatives to fossil fuels even though the latter provide a very large proportion of the energy used today. To avoid disruptive changes, the world will need to be able to continue using fossil fuels but in a climate-friendly way. Capture and storage of carbon dioxide could deliver deep reductions in emissions from fossil fuels but the technology is still in its infancy — this is the subject of on-going work by the IEA Greenhouse Gas R&D Programme. Enhancement of natural sinks, such as forests, could also help by sequestering atmospheric carbon dioxide. Use of biomass for power generation has also been examined to see how it compares as a large-scale mitigation option compared with capture and storage. Methane is another important greenhouse gas, produced by many human activities. Technology can help reduce emissions of methane; examples of some of these technologies will be described. The mechanism of Activities Implemented Jointly is potentially important for application of all of these options and the Greenhouse Gas Programme is working to improving understanding about viable options and methods of delivering successful projects.


Sign in / Sign up

Export Citation Format

Share Document