Measuring natural selection on multivariate phenotypic traits: a protocol for verifiable and reproducible analyses of natural selection

2019 ◽  
Vol 65 (3-4) ◽  
pp. 130-136 ◽  
Author(s):  
Facundo Xavier Palacio ◽  
Mariano Ordano ◽  
Santiago Benitez-Vieyra

The use of multiple regression analysis to quantify the regime and strength of natural selection in nature has been an influential approach in evolutionary biology over the last 36 years. However, many studies fail to report the protocol of estimation of selection coefficients (selection gradients) and the specific model assumptions, thus failing to verify and reproduce the estimation of selection coefficients. We present a brief overview of the Lande and Arnold’s approach and a step-by-step R routine to aid researchers to perform a verifiable and reproducible regression analysis of natural selection. The steps involved in the analysis include: (1) assessing collinearity between phenotypic traits, (2) testing normality of model residuals, and (3) testing multivariate normality of phenotypic traits. We also performed a series of simulations to test the effect of non-symmetrical (skewed) phenotypic traits on the estimation of linear selection gradients. These showed that the bias in the linear gradient increased with increased skewness in phenotypic traits for the quadratic model, whereas the linear gradient of a model with only linear terms was nearly independent of trait skewness. If none of the above assumptions are met, selection gradients need to be estimated from two separate equations, whereas standard errors must be computed using other methods (e.g. bootstrapping). We expect that the procedure outlined here and the availability of analytical codes motivate the verifiability and reproducibility of the Lande and Arnold’s approach in the study of microevolution.

2015 ◽  
Vol 282 (1815) ◽  
pp. 20151421 ◽  
Author(s):  
Göran Arnqvist ◽  
Ahmed Sayadi ◽  
Elina Immonen ◽  
Cosima Hotzy ◽  
Daniel Rankin ◽  
...  

The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the ‘ C -value paradox’. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4–5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.


2017 ◽  
Vol 7 (5) ◽  
pp. 20160145 ◽  
Author(s):  
Douglas J. Futuyma

Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an ‘extended evolutionary synthesis’. ‘Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected ‘process’ of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.


2008 ◽  
Vol 276 (1654) ◽  
pp. 31-37 ◽  
Author(s):  
Kevin R Foster ◽  
Hanna Kokko

Superstitious behaviours, which arise through the incorrect assignment of cause and effect, receive considerable attention in psychology and popular culture. Perhaps owing to their seeming irrationality, however, they receive little attention in evolutionary biology. Here we develop a simple model to define the condition under which natural selection will favour assigning causality between two events. This leads to an intuitive inequality—akin to an amalgam of Hamilton's rule and Pascal's wager—-that shows that natural selection can favour strategies that lead to frequent errors in assessment as long as the occasional correct response carries a large fitness benefit. It follows that incorrect responses are the most common when the probability that two events are really associated is low to moderate: very strong associations are rarely incorrect, while natural selection will rarely favour making very weak associations. Extending the model to include multiple events identifies conditions under which natural selection can favour associating events that are never causally related. Specifically, limitations on assigning causal probabilities to pairs of events can favour strategies that lump non-causal associations with causal ones. We conclude that behaviours which are, or appear, superstitious are an inevitable feature of adaptive behaviour in all organisms, including ourselves.


2018 ◽  
Author(s):  
Russell A. Ligon ◽  
Christopher D. Diaz ◽  
Janelle L. Morano ◽  
Jolyon Troscianko ◽  
Martin Stevens ◽  
...  

Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group - the birds-of-paradise - exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the tradeoff between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit - the courtship phenotype. Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness - functional overlap and interdependency - promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations.Author SummaryAnimals frequently vary widely in ornamentation, even among closely related species. Understanding the patterns that underlie this variation is a significant challenge, requiring comparisons among drastically different traits - like comparing apples to oranges. Here, we use novel analytical approaches to quantify variation in ornamental diversity and richness across the wildly divergent birds-of-paradise, a textbook example of how sexual selection can profoundly shape organismal phenotypes. We find that color and acoustic complexity, along with behavior and acoustic complexity, are positively correlated across evolutionary time-scales. Positive covariation among ornament classes suggests that selection is acting on correlated suites of traits - a composite courtship phenotype - and that this integration may be partially responsible for the extreme variation we see in birds-of-paradise.


2021 ◽  
Author(s):  
Z Jafarian ◽  
S Khamse ◽  
H Afshar ◽  
Khorram Khorshid HR ◽  
A Delbari ◽  
...  

Abstract Across the human protein-coding genes, the neuron-specific gene, RASGEF1C, contains the longest (GGC)-repeat, spanning its core promoter and 5′ untranslated region (RASGEF1C-201 ENST00000361132.9). RASGEF1C expression dysregulation occurs in late-onset neurocognitive disorders (NCDs), such as Alzheimer’s disease. Here we sequenced the GGC-repeat in a sample of human subjects (N = 269), consisting of late-onset NCDs (N = 115) and controls (N = 154). We also studied the status of this STR across vertebrates. The 6-repeat allele of this repeat was the predominant allele in the controls (frequency = 0.85) and NCD patients (frequency = 0.78). The NCD genotype compartment consisted of an excess of genotypes that lacked the 6-repeat (Mid-P exact = 0.004). We also detected divergent genotypes that were present in five NCD patients and not in the controls (Mid-P exact = 0.007). This STR expanded beyond 2-repeats specifically in primates, and was at maximum length in human. We conclude that there is natural selection for the 6-repeat allele of the RASGEF1C (GGC)-repeat in human, and significant divergence from that allele in late-onset NCDs. Indication of natural selection for predominantly abundant STR alleles and divergent genotypes enhance the perspective of evolutionary biology and disease pathogenesis in human complex disorders.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jin Xu ◽  
Chao Yi

Cluster regression analysis model is an effective theory for a reasonable and fair player scoring game. It can roughly predict and evaluate the performance of athletes after the game with limited data and provide scientific predictions for the performance of athletes. The purpose of this research is to achieve the player’s postmatch scoring through the cluster regression model. Through the research and analysis of past ball games, the comparison and experiment of multiple objects based on different regression analysis theories, the following conclusions are drawn. Different regression models have different standard errors, but if the data in other model categories are put into the centroid model expression, the standard error and the error of the original model are within 0.3, which can replace other models for calculation. In the player’s postmatch scoring, although the expert’s prediction of the result is very accurate, within the error range of 1 copy, the player’s postmatch scoring mechanism based on the cluster regression analysis model is more accurate, and the error formula is in the 0.5 range. It is best to switch the data of the regression model twice to compare the scoring mechanism using different regression experiments.


2018 ◽  
Vol 68 (3) ◽  
pp. 227-246
Author(s):  
Nico M. van Straalen

AbstractEvolution acts through a combination of four different drivers: (1) mutation, (2) selection, (3) genetic drift, and (4) developmental constraints. There is a tendency among some biologists to frame evolution as the sole result of natural selection, and this tendency is reinforced by many popular texts. “The Naked Ape” by Desmond Morris, published 50 years ago, is no exception. In this paper I argue that evolutionary biology is much richer than natural selection alone. I illustrate this by reconstructing the evolutionary history of five different organs of the human body: foot, pelvis, scrotum, hand and brain. Factors like developmental tinkering, by-product evolution, exaptation and heterochrony are powerful forces for body-plan innovations and the appearance of such innovations in human ancestors does not always require an adaptive explanation. While Morris explained the lack of body hair in the human species by sexual selection, I argue that molecular tinkering of regulatory genes expressed in the brain, followed by positive selection for neotenic features, may have been the driving factor, with loss of body hair as a secondary consequence.


Author(s):  
Graham Bell

Darwin insisted that evolutionary change occurs very slowly over long periods of time, and this gradualist view was accepted by his supporters and incorporated into the infinitesimal model of quantitative genetics developed by R. A. Fisher and others. It dominated the first century of evolutionary biology, but has been challenged in more recent years both by field surveys demonstrating strong selection in natural populations and by quantitative trait loci and genomic studies, indicating that adaptation is often attributable to mutations in a few genes. The prevalence of strong selection seems inconsistent, however, with the high heritability often observed in natural populations, and with the claim that the amount of morphological change in contemporary and fossil lineages is independent of elapsed time. I argue that these discrepancies are resolved by realistic accounts of environmental and evolutionary changes. First, the physical and biotic environment varies on all time-scales, leading to an indefinite increase in environmental variance over time. Secondly, the intensity and direction of natural selection are also likely to fluctuate over time, leading to an indefinite increase in phenotypic variance in any given evolving lineage. Finally, detailed long-term studies of selection in natural populations demonstrate that selection often changes in direction. I conclude that the traditional gradualist scheme of weak selection acting on polygenic variation should be supplemented by the view that adaptation is often based on oligogenic variation exposed to commonplace, strong, fluctuating natural selection.


2020 ◽  
Author(s):  
Kamaludin Dingle ◽  
Fatme Ghaddar ◽  
Petr Šulc ◽  
Ard A. Louis

The relative prominence of developmental bias versus natural selection is a long standing controversy in evolutionary biology. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. By using the RNAshapes method to define coarse-grained SS classes, we can directly measure the frequencies that non-coding RNA SS shapes appear in nature. Our main findings are, firstly, that only the most frequent structures appear in nature: The vast majority of possible structures in the morphospace have not yet been explored. Secondly, and perhaps more surprisingly, these frequencies are accurately predicted by the likelihood that structures appear upon uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather strong phenotype bias in the RNA genotype-phenotype (GP) map, a type of developmental bias that tightly constrains evolutionary dynamics to only act within a reduced subset of structures which are easy to “find”.


Author(s):  
Mary Jane West-Eberhard

A book on developmental plasticity needs a chapter on assessment, if only to show that adaptive environmental assessment occurs. Skepticism regarding the ability of nonhuman organisms to assess conditions well enough to make adaptive decisions has a long history in evolutionary biology, and it has been an important barrier to understanding the evolution of adaptive developmental plasticity. It is worth briefly reviewing this history in order to understand certain preconceptions about assessment that still persist. In the nineteenth century, critics of Darwin’s theory of sexual selection (Darwin, 1871) balked at the idea of an “aesthetic sense” in lowly creatures that would enable female choice of mates (representative papers are reprinted and discussed in Bajema, 1984). Later, the barrier persisted for other reasons. Even though naturalists routinely used the condition-appropriate expression of phenotypic traits to support adaptation hypotheses—a practice that assumes adaptive assessment of conditions as it is defined here—theoretically inclined biologists paid little attention to the question of facultatively expressed traits. Part of the difficulty lay in the problem of explaining how adaptive assessment could evolve within the framework of conventional genetics. Theodosius Dobzhansky, one of the twentieth century’s leading evolutionary biologists, acknowledged this unresolved problem in remarks following a lecture by J. S. Kennedy on the phase polyphenisms of migratory locusts (Kennedy, 1961). Dobzhansky referred to the “challenge to a geneticist” of explaining the adaptive switch between the sedentary and the migratory phenotypes of the locusts, which had been shown to be largely independent of genotype. He suggested that an extrachromosomal factor may be involved, a symbiotic microorganism that acts as a “plasmagene” whose multiplication would eventually stimulate phase change. Although Dobzhansky’s proposal was no more preposterous than some of the regulatory devices that have actually been discovered, Kennedy (1961) minced no words in his reply to this suggestion: . . . [W]e need not feel obliged to invoke a second organism to explain [phase polymorphism] unless we are reluctant to concede an important part to the environment as well as to heredity in moulding development. . . .


Sign in / Sign up

Export Citation Format

Share Document