Spatial and temporal patterns of wound periderm development in Cryptomeria japonica bark

IAWA Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Etsushi Iizuka ◽  
Megumi Ohse ◽  
Izumi Arakawa ◽  
Peter Kitin ◽  
Ryo Funada ◽  
...  

Abstract Limited investigations have been carried out on the physiological and growth responses of bark to wounding, even though wound periderms play crucial roles in tree defenses. To understand the mechanisms of wound periderm formation, we studied the growth responses and structural changes of wounded bark of three Cryptomeria japonica individuals. We observed the developmental time frame and morphology of wound periderms around mechanically induced wounds in summer. The wound responses included discoloration, lignification, and suberization in tissues present at the time of wounding, followed by wound periderm formation and secondary metabolite deposition. The trees had developed wound periderms approximately 4 weeks after wounding. The wound periderms were within 3 mm in the axial directions and within 1 mm in the lateral directions from the wound surfaces. The distinct patterns of wound periderm formation in the axial and lateral regions resulted from the arrangement and anatomical features of the cells adjacent to the wounds. The wound phellem cells were tangentially narrower and axially shorter in the side and upper/lower regions, respectively, of the wounds. Therefore, the cell division frequencies in the planes parallel to the wound surface may be greater than those in the other directions. Wound reactions in bark might initially be triggered by microenvironmental changes, such as the spread of desiccation, which depends directly on the morphology of phloem cell complexes.

CNS Spectrums ◽  
2002 ◽  
Vol 7 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Cheryl Corcoran ◽  
Lilianne Mujica-Parodi ◽  
Scott Yale ◽  
David Leitman ◽  
Dolores Malaspina

ABSTRACTIt has long been considered that psychosocial stress plays a role in the expression of symptoms in schizophrenia (SZ), as it interacts with latent neural vulnerability that stems from genetic liability and early environmental insult. Advances in the understanding of the neurobiology of the stress cascade in both animal and human studies lead to a plausible model by which this interaction may occur: through neurotoxic effects on the hippocampus that may involve synaptic remodeling. Of late, the neurodevelopmental model of SZ etiology has been favored. But an elaboration of this schema that credits the impact of postnatal events and considers a role for neurodegenerative changes may be more plausible, given the evidence for gene-environment interaction in SZ expression and progressive structural changes observed with magnetic resonance imaging. Furthermore, new insights into nongliotic neurotoxic effects such as apoptosis, failure of neurogenesis, and changes in circuitry lead to an expansion of the time frame in which environmental effects may mediate expression of SZ symptoms.


2021 ◽  
Vol 22 (22) ◽  
pp. 12470
Author(s):  
Snježana Radulović ◽  
Sowmya Sunkara ◽  
Christa Maurer ◽  
Gerd Leitinger

Recent research has provided strong evidence that neurodegeneration may develop from an imbalance between synaptic structural components in the brain. Lately, inhibitory synapses communicating via the neurotransmitters GABA or glycine have come to the center of attention. Increasing evidence suggests that imbalance in the structural composition of inhibitory synapses affect deeply the ability of neurons to communicate effectively over synaptic connections. Progressive failure of synaptic plasticity and memory are thus hallmarks of neurodegenerative diseases. In order to prove that structural changes at synapses contribute to neurodegeneration, we need to visualize single-molecule interactions at synaptic sites in an exact spatial and time frame. This visualization has been restricted in terms of spatial and temporal resolution. New developments in electron microscopy and super-resolution microscopy have improved spatial and time resolution tremendously, opening up numerous possibilities. Here we critically review current and recently developed methods for high-resolution visualization of inhibitory synapses in the context of neurodegenerative diseases. We present advantages, strengths, weaknesses, and current limitations for selected methods in research, as well as present a future perspective. A range of new options has become available that will soon help understand the involvement of inhibitory synapses in neurodegenerative disorders.


2020 ◽  
Vol 26 (6) ◽  
pp. 1373-1391
Author(s):  
I.A. Kolesnik

Subject. This article explores the structure of economic factors at the national level, the Russian stock market's development depends on, and its changes in different economic periods. Objectives. The article aims to identify structural changes in the system of internal factors that determine the conditions of the Russian stock market's development under the influence of macroeconomic shocks of 2008 and 2014. Methods. For the study, I used a correlation analysis, and the event study and descriptive approaches. The study time-frame from 2002 to 2019 is divided into four periods. Results. The article determines that the structure of internal economic factors influencing the Russian stock market gets transformed under the impact of macroeconomic shocks. Conclusions and Relevance. At present, the relationship between the Russian stock market and domestic economic factors is not strictly determined. The modern stock market performs its functions in the development of the real sector of the economy to a moderate degree. The practical significance of the study lies in the possibility of using its results to develop measures to regulate the stock market depending on economic conditions and instruments of impact, as the structure of economic factors in the development of the stock market changes during periods of growth and crisis.


2017 ◽  
Vol 22 (2) ◽  
pp. 126-130 ◽  
Author(s):  
Kazuki Ito ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Shigejiro Yoshida ◽  
Kotaro Sakuta ◽  
...  

2007 ◽  
Vol 292 (5) ◽  
pp. G1302-G1314 ◽  
Author(s):  
Tjalling Bosse ◽  
John J. Fialkovich ◽  
Christina M. Piaseckyj ◽  
Eva Beuling ◽  
Henrike Broekman ◽  
...  

The terminal differentiation phases of intestinal development in mice occur during cytodifferentiation and the weaning transition. Lactase-phlorizin hydrolase (LPH), liver fatty acid binding protein (Fabp1), and sucrase-isomaltase (SI) are well-characterized markers of these transitions. With the use of gene inactivation models in mature mouse jejunum, we have previously shown that a member of the zinc finger transcription factor family ( Gata4) and hepatocyte nuclear factor-1α ( Hnf1α) are each indispensable for LPH and Fabp1 gene expression but are both dispensable for SI gene expression. In the present study, we used these models to test the hypothesis that Gata4 and Hnf1α regulate LPH, Fabp1, and SI gene expression during development, specifically focusing on cytodifferentiation and the weaning transition. Inactivation of Gata4 had no effect on LPH gene expression during either cytodifferentiation or suckling, whereas inactivation of Hnf1α resulted in a 50% reduction in LPH gene expression during these same time intervals. Inactivation of Gata4 or Hnf1α had a partial effect (∼50% reduction) on Fabp1 gene expression during cytodifferentiation and suckling but no effect on SI gene expression at any time during development. Throughout the suckling period, we found a surprising and dramatic reduction in Gata4 and Hnf1α protein in the nuclei of absorptive enterocytes of the jejunum despite high levels of their mRNAs. Finally, we show that neither Gata4 nor Hnf1α mediates the glucocorticoid-induced precocious maturation of the intestine but rather are downstream targets of this process. Together, these data demonstrate that specific intestinal genes have differential requirements for Gata4 and Hnf1α that are dependent on the developmental time frame in which they are expressed.


2022 ◽  
Author(s):  
Tom Beeckman ◽  
Tao Fang ◽  
Hans Motte ◽  
Boris Parizot ◽  
Wouter Smet ◽  
...  

The roots of lycophytes branch through dichotomy or bifurcation, which means that the root apex splits into two daughter roots. This is morphologically distinct from lateral root (LR) branching in the extant euphyllophytes, where LRs develop along the root axis at different distances from the apex. The process of root bifurcation is poorly understood, while such knowledge can be important, as it may represent an evolutionarily ancient strategy that roots recruited to form new stem cells or meristems. In this study, we examined root bifurcation in the lycophyte Selaginella moellendorffii. We characterized an in vitro developmental time-frame based on repetitive apex bifurcations, allowing us to sample different stages of dichotomous root branching and analyze the root meristem and root branching in S. moellendorffii at the microscopical and transcriptional level. Our results show that, in contrast to previous assumptions, initial cells in the root meristem are mostly not tetrahedral but rather show an irregular shape. Tracking down the early stages during root branching argues for the occurrence of a symmetric division of the single initial cell resulting in two apical stem cells allowing for root meristem bifurcation. Moreover, we generated a S. moellendorffii root branching transcriptome, which resulted in the delineation of a subset of core meristem genes. The occurrence of multiple meristem-related orthologues in this dataset, including inversely correlated expression profiles of a SCARECROW (SCR) versus a RETINOBLASTOMA-RELATED1 (RBR1) homologue suggests the presence of conserved pathways in the control of meristem and root stem cell establishment or maintenance.


2021 ◽  
Vol 13 (12) ◽  
pp. 6818
Author(s):  
Magdalena Zaborowska ◽  
Katarzyna Bernat ◽  
Bartosz Pszczółkowski ◽  
Irena Wojnowska-Baryła ◽  
Dorota Kulikowska

There are discrepancies concerning the time frame for biodegradation of different commercially available foils labeled as biodegradable; thus, it is essential to provide information about their biodegradability in the context of their end of life in waste management. Therefore, one-year mesophilic (37 °C) anaerobic degradation tests of two bio-based foils (based on starch (FS), polylactic acid (FPLA)) and oxo-degradable material (FOXO) were conducted in an OxiTop system. Biodegradation was investigated by measuring biogas production (BP) and analyzing structural changes with differential scanning calorimetry, polarizing and digital microscopic analyses, and Fourier transform infrared spectroscopy. After 1 year, FOXO had not degraded; thus, there were no visible changes on its surface and no BP. The bio-based materials produced small amounts of biogas (25.2, FPLA, and 30.4 L/kg VS, FS), constituting 2.1–2.5% of theoretical methane potential. The foil pieces were still visible and only starting to show damage; some pores had appeared in their structure. The structure of FPLA became more heterogeneous due to water diffusing into the structure. In contrast, the structure of FS became more homogenous although individual cracks and fissures appeared. The color of FS had changed, indicating that it was beginning to biodegrade. The fact that FS and FPLA showed only minor structural damage after a one-year mesophilic degradation indicates that, in these conditions, these materials would persist for an unknown but long amount of time.


Author(s):  
Marcus C. de Goffau ◽  
Amadou T. Jallow ◽  
Chilel Sanyang ◽  
Andrew M. Prentice ◽  
Niamh Meagher ◽  
...  

AbstractDistinct bacterial trophic networks exist in the gut microbiota of individuals in industrialized and non-industrialized countries. In particular, non-industrialized gut microbiomes tend to be enriched with Prevotella species. To study the development of these Prevotella-rich compositions, we investigated the gut microbiota of children aged between 7 and 37 months living in rural Gambia (616 children, 1,389 stool samples, stratified by 3-month age groups). These infants, who typically eat a high-fibre, low-protein diet, were part of a double-blind, randomized iron intervention trial (NCT02941081) and here we report the secondary outcome. We found that child age was the largest discriminating factor between samples and that anthropometric indices (collection time points, season, geographic collection site, and iron supplementation) did not significantly influence the gut microbiome. Prevotella copri, Faecalibacterium prausnitzii and Prevotella stercorea were, on average, the most abundant species in these 1,389 samples (35%, 11% and 7%, respectively). Distinct bacterial trophic network clusters were identified, centred around either P.stercorea or F.prausnitzii and were found to develop steadily with age, whereas P.copri, independently of other species, rapidly became dominant after weaning. This dataset, set within a critical gut microbial developmental time frame, provides insights into the development of Prevotella-rich gut microbiomes, which are typically understudied and are underrepresented in western populations.


2019 ◽  
Vol 63 (3-4-5) ◽  
pp. 187-201 ◽  
Author(s):  
Zofia E. Madeja ◽  
Piotr Pawlak ◽  
Anna Piliszek

The preimplantation development of mammals generally follows the same plan. It starts with the formation of a totipotent zygote, and through consecutive cleavage divisions and differentiation events leads to blastocyst formation. However, the intervening events may differ between species. The regulation of these processes has been extensively studied in the mouse, which displays some unique features among eutherian mammals. Farm animals such as pigs, cattle, sheep and rabbits share several similarities with one another, and with the human developmental plan. These include the timing of epigenetic reprogramming, the moment of embryonic genome activation and the developmental time-frame. Recently, efficient techniques for genetic modification have been established for large domestic animals. Genome sequences and gene manipulation tools are now available for cattle, pigs, sheep and goats, and a larger number of genetically engineered livestock is now accessible for biomedical research. Yet, these animals still make up less than 0.5% of animals in research, mainly due to our inadequate knowledge of the processes responsible for pluripotency maintenance (to date no stable naïve embryonic stem cell lines have been established) and early development. In this review, we highlight our present knowledge of the key preimplantation events in the 3 non-rodent species which present the highest potential for biomedical research related to early embryonic development: cattle, which offer an excellent model to study human in vitro embryo development, pigs which emerge as models to study the long-term effects of gene-based therapies and rabbits, which in many aspects of embryology resemble the human.


2020 ◽  
Author(s):  
David Loibl ◽  
Georgy Ayzel ◽  
Fiona Clubb ◽  
Inge Grünberg ◽  
Jan Nitzbon

<p>For only two out of more than 95 * 10³ glaciers in High Mountain Asia (HMA) a continuous time series of mass balance measurements covering more than 30 years (World Glacier Monitoring Service’s ‘reference glaciers’) is available to date. Considering that both glaciers are located in the Tian Shan Range, i.e. the northernmost part of HMA, and that glacier changes in HMA is known to be heterogeneous in space and time, it is clear that a substantial knowledge gap exists regarding the actual dynamics at individual glaciers and their forcing. </p><p>Here, we present a novel data set of transient snowline altitude (TSLA) measurements covering all glaciers > 0.5 km² in HMA (n=28,501) for a time frame from the mid 1980s to late 2019 based on more than 10⁵ Landsat satellite images, allowing for investigations of the characteristics of glacier change at unprecedented spatio-temporal resolution and coverage.</p><p>Individual glacier’s total maxima of end-of-season TSLAs for the whole period of observation clearly highlight years with many (i.e. 1994, 2009, 2013, 2015) and few (i.e. 1995, 2003, 2012) maxima. Out of the glaciers that show a significant trend throughout the observation period, 90.8% have a positive trend with a median TSLA rise of 7.0 m/year. These figures increase to 95.8% and 13.8 m/year, when only observations of the last two decades are considered.</p><p>Based on ERA5 meteorological time series and fundamental physiographic glacier characteristics from the Randolph Glacier Inventory v6, we investigated drivers of the observed TSLA fluctuations. Consistent with expectations, a Random Forest analysis finds temperature to be the dominant meteorological driver of TSLA dynamics throughout all regions of HMA when whole years are considered. Conversely, meteorological forcing regimes are highly heterogeneous for different glaciers in the ablation phase, with wind, air temperature and incoming shortwave radiation being the dominant TSLA drivers for the majority of glaciers in HMA. Considering regional domains, TSLA dynamics are considerably determined by physiographic factors, such as latitude, longitude, hypsographic characteristics, slope and aspect of individual glaciers. A hierarchical clustering analysis shows distinct groups of similar forcing setups exist; Their spatial distribution, however, rather follows specific positions in the topoclimatic system than forming distinct regional clusters or aligning to large-scale gradients.</p><p>In summary, our findings indicate that spatial and temporal patterns of glacier change in HMA are considerably more complex than currently known. Multidecadal high-resolution TSLA datasets like the one presented here may inform future research to disentangle the complex topoclimatic process-response systems that control the adaptation of individual glaciers to climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document