scholarly journals Human Brain and Human Mind: The Discourse on the Anatomy of the Brain and Its Philosophical Reception

2018 ◽  
pp. 87-112 ◽  
Keyword(s):  
Mind Shift ◽  
2021 ◽  
pp. 1-16
Author(s):  
John Parrington

This introductory chapter begins by providing an overview of the power of the human brain, which is displayed in the wonders of modern civilization. Despite the human brain’s capacity for such intellectual and technological feats, we still know astonishingly little about how it achieves them. This deficit in understanding is a problem not only because it means we lack basic knowledge of the biological factors that underlie our human uniqueness, but also because, for all its amazing capabilities, the human mind seems particularly prone to dysfunction. Still, some would argue there is good reason to be optimistic about the prospect of developing new and better treatments for mental disorders in the not-so-distant future. Such optimism is based on the increasing potential to study how the brain works in various important new ways thanks to recent technological innovations. The chapter then considers two overly polarised views of the human mind. Ultimately, this book argues that society radically restructures the human brain within an individual person’s lifetime, and that it has also played a central role in the past history of our species, by shaping brain evolution.


Author(s):  
Jack M. Gorman

Some scientists now argue that humans are really not superior to other species, including our nearest genetic neighbors, chimpanzees and bonobos. Indeed, those animals seem capable of many things previously thought to be uniquely human, including a sense of the future, empathy, depression, and theory of mind. However, it is clear that humans alone produce speech, dominate the globe, and have several brain diseases like schizophrenia. There are three possible sources within the brain for these differences in brain function: in the structure of the brain, in genes coding for proteins in the brain, and in the level of expression of genes in the brain. There is evidence that all three are the case, giving us a place to look for the intersection of the human mind and brain: the expression of genes within neurons of the prefrontal cortex.


2021 ◽  
Vol 11 (1) ◽  
pp. 139-162
Author(s):  
Achmad Ushuluddin ◽  
Abd Madjid ◽  
Siswanto Masruri ◽  
Mohammad Affan

There are three theories of human intelligence, namely Intellectual Quotient (IQ), Emotional Quotient (EQ), and Spiritual Quotient (SQ). In its subsequent development, following the SQ era that considered the God Spot in the human brain as a source of intelligence, the concept of the Heart's Code (HC) indicates that the source of intelligence lies in the heart, not the brain. The SQ model proposed by Zohar-Marshall and the HC model suggested by Pearsall only touched the biological and psychological realms, namely the material brain and the material heart. Both have yet to touch upon the transcendental level of divinity, namely the spiritual brain and the spiritual heart. By using Thomas Kuhn’s scientific revolution approach, the current article intends to prove that the source of intelligence is not the brain but the ruh. When God has perfected the creation of man by blowing ruh in him, the sense of hearing subsequently radiates through the ears, sight through the eyes, smell through the nose, speech through the mouth, taste through the tongue, and intelligence through the brain. As a consequence, the brain is but a tool, it is not a source of intelligence. If IQ, EQ, and SQ are regarded as intelligence models originating from the human mind, which is certainly artificial in nature, then Ruhani Quotient (RQ) is an intelligence model originally created by God. Ruhani Quotient (RQ), which is based on the ruh, has implications on new studies pertaining to ruhiology.


Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


Author(s):  
Sally M. Essawy ◽  
Basil Kamel ◽  
Mohamed S. Elsawy

Some buildings hold certain qualities of space design similar to those originated from nature in harmony with its surroundings. These buildings, mostly associated with religious beliefs and practices, allow for human comfort and a unique state of mind. This paper aims to verify such effect on the human brain. It concentrates on measuring brain waves when the user is located in several spots (coordinates) in some of these buildings. Several experiments are conducted on selected case studies to identify whether certain buildings affect the brain wave frequencies of their users or not. These are measured in terms of Brain Wave Frequency Charts through EEG Device. The changes identified on the brain were then translated into a brain diagram that reflects the spiritual experience all through the trip inside the selected buildings. This could then be used in architecture to enhance such unique quality.


Author(s):  
Henrik Hogh-Olesen

Chapter 7 takes the investigation of the aesthetic impulse into the human brain to understand, first, why only we—and not our closest relatives among the primates—express ourselves aesthetically; and second, how the brain reacts when presented with aesthetic material. Brain scans are less useful when you are interested in the Why of aesthetic behavior rather than the How. Nevertheless, some brain studies have been ground-breaking, and neuroaesthetics offers a pivotal argument for the key function of the aesthetic impulse in human lives; it shows us that the brain’s reward circuit is activated when we are presented with aesthetic objects and stimuli. For why reward a perception or an activity that is evolutionarily useless and worthless in relation to human existence?


2021 ◽  
Vol 16 ◽  
pp. 263310552110187
Author(s):  
Christopher D Link

Numerous studies have identified microbial sequences or epitopes in pathological and non-pathological human brain samples. It has not been resolved if these observations are artifactual, or truly represent population of the brain by microbes. Given the tempting speculation that resident microbes could play a role in the many neuropsychiatric and neurodegenerative diseases that currently lack clear etiologies, there is a strong motivation to determine the “ground truth” of microbial existence in living brains. Here I argue that the evidence for the presence of microbes in diseased brains is quite strong, but a compelling demonstration of resident microbes in the healthy human brain remains to be done. Dedicated animal models studies may be required to determine if there is indeed a “brain microbiome.”


2020 ◽  
Vol 31 (8) ◽  
pp. 803-816
Author(s):  
Umberto di Porzio

AbstractThe environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned “on” and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.


2021 ◽  
Vol 22 (15) ◽  
pp. 8325
Author(s):  
Paola Zanfardino ◽  
Stefano Doccini ◽  
Filippo M. Santorelli ◽  
Vittoria Petruzzella

Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as ‘mitoexome’, ‘mitoproteome’ and ‘mitointeractome’ have entered the field of ‘mitochondrial medicine’. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


Sign in / Sign up

Export Citation Format

Share Document