Airway Epithelial Cell Death By IFN³ Requires STAT1 And ERK 1/2- Mediated Translocation Of Bak To The Endoplasmic Reticulum

Author(s):  
Ivan Leyva-Baca ◽  
Yohannes Tesfaigzi
2012 ◽  
Vol 421 (4) ◽  
pp. 790-796 ◽  
Author(s):  
Mi Na Kim ◽  
Kyung Eun Lee ◽  
Jung Yeon Hong ◽  
Won Il Heo ◽  
Kyung Won Kim ◽  
...  

Nitric Oxide ◽  
2006 ◽  
Vol 14 (4) ◽  
pp. 68
Author(s):  
Michael Posencheg ◽  
Andrew J. Gow ◽  
Ping Wang ◽  
Linda Ganzales ◽  
Changjiang Guo

2021 ◽  
Vol 22 (3) ◽  
pp. 1215
Author(s):  
Mi Ho Jeong ◽  
Mi Seon Jeon ◽  
Ga Eun Kim ◽  
Ha Ryong Kim

Airway epithelial cell death contributes to the pathogenesis of lung fibrosis. Polyhexamethylene guanidine phosphate (PHMG-p), commonly used as a disinfectant, has been shown to be strongly associated with lung fibrosis in epidemiological and toxicological studies. However, the molecular mechanism underlying PHMG-p-induced epithelial cell death is currently unclear. We synthesized a PHMG-p–fluorescein isothiocyanate (FITC) conjugate and assessed its uptake into lung epithelial A549 cells. To examine intracellular localization, the cells were treated with PHMG-p–FITC; then, the cytoplasmic organelles were counterstained and observed with confocal microscopy. Additionally, the organelle-specific cell death pathway was investigated in cells treated with PHMG-p. PHMG-p–FITC co-localized with the endoplasmic reticulum (ER), and PHMG-p induced ER stress in A549 cells and mice. The ER stress inhibitor tauroursodeoxycholic acid (TUDCA) was used as a pre-treatment to verify the role of ER stress in PHMG-p-induced cytotoxicity. The cells treated with PHMG-p showed apoptosis, which was inhibited by TUDCA. Our results indicate that PHMG-p is rapidly located in the ER and causes ER-stress-mediated apoptosis, which is an initial step in PHMG-p-induced lung fibrosis.


2018 ◽  
Author(s):  
Yinghui Rong ◽  
Jennifer Westfall ◽  
Dylan Ehrbar ◽  
Timothy LaRocca ◽  
Nicholas J. Mantis

ABSTRACTInhalation of ricin toxin is associated with the onset of acute respiratory distress syndrome (ARDS), characterized by hemorrhage, inflammatory exudates, and tissue edema, as well as the near complete destruction of the lung epithelium. Here we report that the Calu-3 human airway epithelial cell line is relatively impervious to the effects of ricin, with little evidence of cell death even upon exposure to microgram amounts of toxin. However, the addition of exogenous soluble TNF-Related Apoptosis Inducing Ligand (TRAIL; CD253) dramatically sensitized Calu-3 cells to ricin-induced apoptosis. Calu-3 cell killing in response to ricin and TRAIL was reduced upon the addition of caspase-8 and caspase-3/7 inhibitors, but not caspase 9 inhibitors, consistent with involvement of extrinsic apoptotic pathways in cell death. We employed nCounter Technology to define the transcriptional response of Calu-3 cells to ricin, TRAIL, and the combination of ricin plus TRAIL. An array of genes associated with inflammation-and cell death were significantly up regulated upon treatment with ricin toxin, and further amplified upon addition of TRAIL. Of particular note was IL-6, whose expression in Calu-3 cells increased 300-fold upon ricin treatment and more than 750-fold upon ricin and TRAIL treatment. IL-6 secretion by Calu-3 cells was confirmed by cytometric bead array. Based on these finding, we speculate that the severe airway epithelial cell damage observed in animal models following ricin exposure is a result of a positive feedback loop driven by pro-inflammatory cytokines like TRAIL and IL-6.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Yinghui Rong ◽  
Jennifer Westfall ◽  
Dylan Ehrbar ◽  
Timothy LaRocca ◽  
Nicholas J. Mantis

ABSTRACTInhalation of ricin toxin is associated with the onset of acute respiratory distress syndrome (ARDS), characterized by hemorrhage, inflammatory exudates, and tissue edema, as well as the nearly complete destruction of the lung epithelium. Here we report that the Calu-3 human airway epithelial cell line is relatively impervious to the effects of ricin, with little evidence of cell death even upon exposure to microgram amounts of toxin. However, the addition of exogenous solubletumornecrosisfactor (TNF)-relatedapoptosis-inducingligand (TRAIL; CD253) dramatically sensitized Calu-3 cells to ricin-induced apoptosis. Calu-3 cell killing in response to ricin and TRAIL exposure was partially inhibited by caspase-8 and caspase-3/7 inhibitors, consistent with involvement of extrinsic apoptotic pathways in cell death. We employed nCounter Technology to define the transcriptional response of Calu-3 cells to ricin, TRAIL, and the combination of ricin plus TRAIL. An array of genes associated with inflammation and cell death were significantly upregulated upon treatment with ricin toxin and were further amplified upon addition of TRAIL. Of particular note was interleukin-6 (IL-6), whose expression in Calu-3 cells increased 300-fold upon ricin treatment and more than 750-fold upon ricin and TRAIL treatment. IL-6 secretion by Calu-3 cells was confirmed by cytometric bead array analysis. On the basis of these finding, we speculate that the severe airway epithelial cell damage observed in animal models following ricin exposure is a result of a positive-feedback loop driven by proinflammatory cytokines such as TRAIL and IL-6.IMPORTANCERicin toxin is a biothreat agent that is particularly damaging to lung tissue following inhalation. A hallmark of ricin exposure is widespread inflammation and concomitant destruction of the airway epithelium. In this study, we investigated the possible interaction between ricin and known proinflammatory cytokines associated with lung tissue. Using an established human airway epithelial cell line, we demonstrate that epithelial cell killing by ricin is significantly enhanced in the presence of the proinflammatory cytokine known as TRAIL (CD253). Moreover, epithelial cells that are simultaneously exposed to ricin and TRAIL produced large amounts of secondary proinflammatory signals, including IL-6, which in the context of the lung would be expected to exacerbate toxin-induced tissue damage. Our results suggest that therapies designed to neutralize proinflammatory cytokines such as TRAIL and IL-6 may limit the bystander damage associated with ricin exposure.


Author(s):  
Nikos Oikonomou ◽  
Martjin J. Schuijs ◽  
Antonis Chatzigiagkos ◽  
Ariadne Androulidaki ◽  
Vassilis Aidinis ◽  
...  

AbstractRegulation of epithelial cell death has emerged as a key mechanism controlling immune homeostasis in barrier surfaces. Necroptosis is a type of regulated necrotic cell death induced by receptor interacting protein kinase 3 (RIPK3) that has been shown to cause inflammatory pathologies in different tissues. The role of regulated cell death and particularly necroptosis in lung homeostasis and disease remains poorly understood. Here we show that mice with Airway Epithelial Cell (AEC)-specific deficiency of Fas-associated with death domain (FADD), an adapter essential for caspase-8 activation, developed exacerbated allergic airway inflammation in a mouse model of asthma induced by sensitization and challenge with house dust mite (HDM) extracts. Genetic inhibition of RIPK1 kinase activity by crossing to mice expressing kinase inactive RIPK1 as well as RIPK3 or MLKL deficiency prevented the development of exaggerated HDM-induced asthma pathology in FADDAEC-KO mice, suggesting that necroptosis of FADD-deficient AECs augmented the allergic immune response. These results reveal a role of AEC necroptosis in amplifying airway allergic inflammation and suggest that necroptosis could contribute to asthma exacerbations caused by respiratory virus infections inducing AEC death.


Sign in / Sign up

Export Citation Format

Share Document