Signaling Pathways Underlying Muscle Protein Synthesis In The Hypertrophied Right Ventricle In An Animal Model Of Pulmonary Arterial Hypertension

Author(s):  
Brandon S. Grimes ◽  
Mario Fournier ◽  
Xuan Xu ◽  
Michael I. Lewis
2021 ◽  
Author(s):  
Ryan Middleton ◽  
Mario Fournier ◽  
Russell Rogers ◽  
Brandon Grimes ◽  
Xuan Xu ◽  
...  

Abstract BackgroundPulmonary Arterial Hypertension (PAH) is a progressive cardiopulmonary disease and is characterized by occlusive remodeling of pulmonary arterioles and increased pulmonary vascular resistance. With the onset of PAH, the right ventricle (RV) of the heart adapts to the increased afterload pressure by undergoing adaptive hypertrophic remodeling to maintain adequate blood flow. However, for unknown reasons, maladaptive influences ensue, resulting in impaired RV function with progressive decompensation and right heart failure. Using a rodent model of PAH, we evaluated key signaling pathways mediating cardiac muscle protein synthesis in the RV during the adaptive hypertrophy phase, with preserved right heart function, and the decompensated maladaptive phase, in which right heart failure (RHF) was clinically present.MethodsMale Sprague-Dawley rats were injected subcutaneously with 60mg/kg Monocrotaline (MCT) and RV function was assessed by echocardiography during PAH disease progression. RV tissue was collected during the adaptive and maladaptive phases of PAH and cell signaling pathways involved in survival, hypertrophy, and autophagy, as well as fibrosis and vascularization, were probed using qPCR, Western blotting and histology. Statistical analysis was performed using ANOVA to compare differences between the independent groups and Student-Newman-Keuls test was used to compare differences within independent groups.ResultsAnalysis of protein and gene expression changes in PAH animals identified three key signaling pathways involved in the shift toward maladaptive right heart failure: i) PI3K/Akt/mTOR; ii) GSK-3; iii) MAPK/ERK, as well as IGF-1 regulation. During adaptive hypertrophy, significant increments of phosphorylated proteins in the three signaling pathways were observed with increases in RV fibrosis and decreased capillarity found. In the maladaptive phase, mTORC1 and its downstream effector p-70S6K were significantly activated, contributing to the decreased LC3-I/II ratio, a marker of autophagy inhibition. Additionally, p27, a cyclin-dependent kinase (CDK) inhibitor, which has been recently implicated in regulating mTOR activity to inhibit autophagy and promote heart failure was significantly downregulated. ConclusionWe propose that autophagy inhibition in conjunction with other maladaptive processes reported in the decompensated RV muscle contributes to the genesis of overt RHF in PAH and that a continuum of changes characterizes the adaptive and maladaptive phases in the RV muscle.


2018 ◽  
Vol 96 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Rafaela Siqueira ◽  
Rafael Colombo ◽  
Adriana Conzatti ◽  
Alexandre Luz de Castro ◽  
Cristina Campos Carraro ◽  
...  

The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg−1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor β (ER-β). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.


2015 ◽  
Vol 46 (3) ◽  
pp. 832-842 ◽  
Author(s):  
Emmy Manders ◽  
Silvia Rain ◽  
Harm-Jan Bogaard ◽  
M. Louis Handoko ◽  
Ger J.M. Stienen ◽  
...  

Pulmonary arterial hypertension (PAH) is a fatal lung disease characterised by progressive remodelling of the small pulmonary vessels. The daily-life activities of patients with PAH are severely limited by exertional fatigue and dyspnoea. Typically, these symptoms have been explained by right heart failure. However, an increasing number of studies reveal that the impact of the PAH reaches further than the pulmonary circulation. Striated muscles other than the right ventricle are affected in PAH, such as the left ventricle, the diaphragm and peripheral skeletal muscles. Alterations in these striated muscles are associated with exercise intolerance and reduced quality of life. In this Back to Basics article on striated muscle function in PAH, we provide insight into the pathophysiological mechanisms causing muscle dysfunction in PAH and discuss potential new therapeutic strategies to restore muscle dysfunction.


2019 ◽  
Vol 9 (4) ◽  
pp. 204589401988977 ◽  
Author(s):  
Edda Spiekerkoetter ◽  
Elena A. Goncharova ◽  
Christophe Guignabert ◽  
Kurt Stenmark ◽  
Grazyna Kwapiszewska ◽  
...  

In order to intervene appropriately and develop disease-modifying therapeutics for pulmonary arterial hypertension, it is crucial to understand the mechanisms of disease pathogenesis and progression. We herein discuss four topics of disease mechanisms that are currently highly debated, yet still unsolved, in the field of pulmonary arterial hypertension. Is pulmonary arterial hypertension a cancer-like disease? Does the adventitia play an important role in the initiation of pulmonary vascular remodeling? Is pulmonary arterial hypertension a systemic disease? Does capillary loss drive right ventricular failure? While pulmonary arterial hypertension does not replicate all features of cancer, anti-proliferative cancer therapeutics might still be beneficial in pulmonary arterial hypertension if monitored for safety and tolerability. It was recognized that the adventitia as a cell-rich compartment is important in the disease pathogenesis of pulmonary arterial hypertension and should be a therapeutic target, albeit the data are inconclusive as to whether the adventitia is involved in the initiation of neointima formation. There was agreement that systemic diseases can lead to pulmonary arterial hypertension and that pulmonary arterial hypertension can have systemic effects related to the advanced lung pathology, yet there was less agreement on whether idiopathic pulmonary arterial hypertension is a systemic disease per se. Despite acknowledging the limitations of exactly assessing vascular density in the right ventricle, it was recognized that the failing right ventricle may show inadequate vascular adaptation resulting in inadequate delivery of oxygen and other metabolites. Although the debate was not meant to result in a definite resolution of the specific arguments, it sparked ideas about how we might resolve the discrepancies by improving our disease modeling (rodent models, large-animal studies, studies of human cells, tissues, and organs) as well as standardization of the models. Novel experimental approaches, such as lineage tracing and better three-dimensional imaging of experimental as well as human lung and heart tissues, might unravel how different cells contribute to the disease pathology.


Sign in / Sign up

Export Citation Format

Share Document