scholarly journals Single Cell RNA Sequencing Reveals Altered T-Cell Repertoire and Gene Expression in the Peripheral Blood and Lungs of Patients with Idiopathic Pulmonary Fibrosis

Author(s):  
A. Unterman ◽  
N. Neumark ◽  
A. Zhao ◽  
J.C. Schupp ◽  
T. Adams ◽  
...  
2019 ◽  
Vol 36 (2) ◽  
pp. 546-551 ◽  
Author(s):  
Kyungsoo Kim ◽  
Sunmo Yang ◽  
Sang-Jun Ha ◽  
Insuk Lee

Abstract Motivation The immune system has diverse types of cells that are differentiated or activated via various signaling pathways and transcriptional regulation upon challenging conditions. Immunophenotyping by flow and mass cytometry are the major approaches for identifying key signaling molecules and transcription factors directing the transition between the functional states of immune cells. However, few proteins can be evaluated by flow cytometry in a single experiment, preventing researchers from obtaining a comprehensive picture of the molecular programs involved in immune cell differentiation. Recent advances in single-cell RNA sequencing (scRNA-seq) have enabled unbiased genome-wide quantification of gene expression in individual cells on a large scale, providing a new and versatile analytical pipeline for studying immune cell differentiation. Results We present VirtualCytometry, a web-based computational pipeline for evaluating immune cell differentiation by exploiting cell-to-cell variation in gene expression with scRNA-seq data. Differentiating cells often show a continuous spectrum of cellular states rather than distinct populations. VirtualCytometry enables the identification of cellular subsets for different functional states of differentiation based on the expression of marker genes. Case studies have highlighted the usefulness of this subset analysis strategy for discovering signaling molecules and transcription factors for human T-cell exhaustion, a state of T-cell dysfunction, in tumor and mouse dendritic cells activated by pathogens. With more than 226 scRNA-seq datasets precompiled from public repositories covering diverse mouse and human immune cell types in normal and disease tissues, VirtualCytometry is a useful resource for the molecular dissection of immune cell differentiation. Availability and implementation www.grnpedia.org/cytometry


2021 ◽  
Author(s):  
Manman Dai ◽  
Min Feng ◽  
Ziwei Li ◽  
Weisan Chen ◽  
Ming Liao

ABSTRACTChicken peripheral blood lymphocytes (PBLs) exhibit wide-ranging cell types, but current understanding of their subclasses, immune cell classification, and function is limited and incomplete. Previously, we found that viremia caused by avian leukosis virus subgroup J (ALV‐J) was eliminated by 21 days post infection (DPI), accompanied by increased CD8+ T cell ratio in PBLs and low antibody levels. Here we performed single-cell RNA sequencing (scRNA-seq) of PBLs in ALV-J infected and control chickens at 21 DPI to determine chicken PBL subsets and their specific molecular and cellular characteristics, before and after viral infection. Eight cell clusters and their potential marker genes were identified in chicken PBLs. T cell populations (clusters 6 and 7) had the strongest response to ALV-J infection at 21 DPI, based on detection of the largest number of differentially expressed genes (DEGs). T cell populations of clusters 6 and 7 could be further divided into four subsets: activated CD4+ T cells (cluster A0), Th1-like cells (cluster A2), Th2-like cells (cluster A1), and cytotoxic CD8+ T cells. Hallmark genes for each T cell subset response to viral infection were initially identified. Furthermore, pseudotime analysis results suggested that chicken CD4+ T cells could potentially differentiate into Th1-like and Th2-like cells. Moreover, ALV-J infection probably induced CD4+ T cell differentiation into Th1-like cells in which the most immune related DEGs were detected. With respect to the control group, ALV-J infection also had an obvious impact on PBL cell composition. B cells showed inconspicuous response and their numbers decreased in PBLs of the ALV-J infected chickens at 21 DPI. Percentages of cytotoxic Th1-like cells and CD8+ T cells were increased in the T cell population of PBLs from ALV-J infected chicken, which were potentially key mitigating factors against ALV-J infection. More importantly, our results provided a rich resource of gene expression profiles of chicken PBL subsets for a systems-level understanding of their function in homeostatic condition as well as in response to viral infection.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4107-4107
Author(s):  
Tanaya Shree ◽  
Anuja Sathe ◽  
Debra K. Czerwinski ◽  
Steven R. Long ◽  
Hanlee Ji ◽  
...  

Abstract The critical determinants of effective antitumor immune responses, whether native or induced by therapy, remain poorly understood due to the complexity and plasticity of the immune system. To better profile and track these responses, we have employed the novel approach of performing single cell RNA sequencing for paired gene expression and immune repertoire analysis on tumor fine needle aspirates and peripheral blood of lymphoma patients undergoing immunotherapy on a clinical trial (NCT02927964). In this in situ vaccination study, patients with low-grade lymphoma received local low-dose radiation and intratumoral SD-101 (a TLR9 agonist) to one site of disease, with systemic ibrutinib (a BTK inhibitor) added in the second week of treatment. Tumor fine needle aspirates and peripheral blood samples were obtained prior to treatment, at one week (prior to ibrutinib initiation) and at six weeks after treatment start. Single cell preparations were processed using 10X Genomics' single cell RNA transcription and library preparation protocol, followed by sequencing on the Illumina platform. Cells were sequenced to an average depth of 50,000 reads/cell for gene expression libraries and 5000 reads/cell for TCR sequencing. Identification of variable genes, principal component and/or canonical correlation analysis, graph-based clustering and differential expression analysis of single-cell gene expression data was performed using the Seurat algorithm. Single-cell TCR repertoires were analyzed using TCR-specific analysis software. This data is being integrated with data from multiparameter flow cytometry and functional immune assays for these same patients, as well as with their clinical outcomes. Sequencing libraries have been prepared from 37 samples from 4 patients thus far. We have successfully generated single cell gene expression and TCR libraries from 3,000-10,000 cells from tumor fine needle aspirates and peripheral blood, with excellent sequencing quality metrics obtained. From detailed analyses of one patient's samples thus far, we have identified distinct immune populations in blood and tumor (Figure 1), including light-chain restricted B-cells, with good concordance with flow cytometry. Preliminary results show changes occurring in immune cell frequencies and phenotypes at the treated tumor site, at distant tumor sites and in the peripheral blood when samples from before and after treatment are compared. Sample collection, sequencing, and analysis are ongoing. Deep profiling of serial biopsies during immunotherapy using single cell RNA sequencing promises to illuminate underlying cellular dynamics, and paired with clinical outcome data, determinants of response. Ultimately, this may provide a roadmap for successful translation of single-cell genomics into the clinic for treatment monitoring and response prediction. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Katharina Heinzelmann ◽  
Qianjiang Hu ◽  
Yan Hu ◽  
Evgenia Dobrinskikh ◽  
Henrik M. Ulke ◽  
...  

AbstractIdiopathic Pulmonary Fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options. Epithelial reprogramming and honeycomb cysts are key pathological features of IPF, however, the IPF distal bronchiole cell subtypes and their potential contribution to IPF development and progression still remain poorly characterized. Here, we utilized single-cell RNA sequencing on enriched EpCAM+ cells of the distal IPF and Donor lung. Using the 10x Genomics platform, we generated a dataset of 47,881 cells and found distinct cell clusters, including rare cell types, such as suprabasal cells recently reported in the healthy lung. We identified G-protein coupled receptor (GPR) 87 as a novel surface marker of distal Keratin (KRT)5+ basal cells. GPR87 expression was localized to distal bronchioles and honeycomb cysts in IPF in situ by RNA Scope and immunolabeling. Modulation of GPR87 in primary human bronchial epithelial cells cultures resulted in impaired airway differentiation and ciliogenesis. Thus, GPR87 is a novel marker and potentially druggable target of KRT5+ basal progenitor cells likely contributing to bronchiole remodeling and honeycomb cyst development in IPF.


Sign in / Sign up

Export Citation Format

Share Document