scholarly journals Engineered Polymer Platforms for Directing Endothelial Cell Function In Vitro

Author(s):  
V.J. Léandre ◽  
L. Livi ◽  
D. Hoffman-Kim ◽  
E.O. Harrington
2008 ◽  
Vol 1136 ◽  
Author(s):  
Jing Lu ◽  
Dongwoo Khang ◽  
Thomas J. Webster

ABSTRACTTo study the contribution of different surface feature properties in improving vascular endothelial cell adhesion, rationally designed nano/sub-micron patterns with various dimensions were created on titanium surfaces in this study. In vitro results indicated that endothelial cell adhesion was improved when the titanium pattern dimensions decreased into the nano-scale. Specifically, endothelial cells preferred to adhere on sub-micron and nano rough titanium substrates compared to flat titanium. Moreover, titanium with nano and sub-micron roughness and with the same chemistry as compared to flat titanium, had significantly greater surface energy. Thus, the present study indicated the strong potential of surface nanotopography and nano/sub-micron roughness for improving current vascular stent design.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 845-845
Author(s):  
Tatiana Byzova ◽  
Juhua Chen ◽  
Payaningal R. Somanath

Abstract The major mechanism to adapt to ischemic conditions is the development of neovascularization, i.e. angiogenesis, a process driven by members of VEGF family of growth factors. Phosphoinositide 3-kinase/Akt pathway is a critical component of the signaling network that regulates endothelial cell function related to angiogenesis. VEGF treatment of endothelial cells results in rapid phosphorylation of Akt. Our studies demonstrated that Akt kinase activity is necessary for VEGF-induced and integrin-mediated endothelial cell adhesion and migration. Moreover, cell transfection with a constitutive active form of Akt (myr-Akt) leads to increased function of integrin receptors. Using Akt-1 null mice we found that Akt-1 controls VEGF-induced and integrin-dependent endothelial cell responses in vitro. Impaired endothelial cell migration and adhesion to extracellular matrix and a reduced rate of cell proliferation were observed in Akt-1 (−/−) endothelial cells compared to WT. There are three Akt isoforms with different tissue distribution, however, it appears that Akt-1 is a predominant isoform in skin and in skin microvasculature. This observation prompted us to perform series of in vivo experiments designed to assess the angiogenic response in skin in the absence of Akt-1. Angiogenesis assay using matrigel plugs revealed that the weight and hemoglobin content of matrigel plugs is about two fold higher in Akt (−/−) mice compared to WT mice. Tumor angiogenesis also appears to be enhanced in Akt(−/−) mice, resulting in the significantly lower degree of tumor necrosis. Blood vessels in Akt (−/−) mice appear to be smaller in diameter and have reduced laminin content. Our analysis revealed significant changes in blood vessel wall matrix composition of Akt (−/−) mice as compared to WT animals. These changes resulted in increased vascular permeability in skin of Akt (−/−) mice. Akt-1 is known to target multiple cellular processes including adhesive properties, cell survival, transcription and translation. It appears that the phenotype of Akt-1 (−/−) mice depends on the equilibrium between pro-angiogenic and anti-angiogenic roles of Akt-1 and reveals a central role for Akt-1 in the regulation of matrix production and maturation of blood vessels.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15648-15648
Author(s):  
G. Bartsch ◽  
K. Eggert ◽  
S. Loges ◽  
W. Fiedler ◽  
E. Laack ◽  
...  

15648 Background: Combinations of cytotoxic drugs lead to increased activity and minimize resistance compared to single agents in tumor therapy. Similarly, antiangiogenic treatment could be improved by combinations targeting different pathways. We investigated a combination of endogenous inhibitors using endostatin (ES), soluble Neuropilin-1 (sNP-1), and thrombospondin-2 (TSP-2) in a model of renal cell carcinoma. Methods: Porcine aortic endothelial cells have been engineered for stable production of angiogenic inhibitors by lipofection and were encapsulated in sodium alginate microbeads. Proliferation of human umbilical vein endothelial cells or Renca renal carcinoma cells was examined after incubation with different microbeads. Similarly, effects of inhibitors on endothelial cell function were tested in tube formation and in vitro wound assays. Microbeads were implanted into SCID mice with subcutaneously growing tumors derived from Renca cells or in mice developing lung metastases after intravenous injection of tumor cells. Results: Factors released from microbeads inhibited endothelial cell function but had no effect on tumor cell proliferation in vitro. In vivo, subcutaneous tumor growth was inhibited similarly by each angiogenic inhibitor alone. After 30 days mean tumor weight was 1.3 g in controls and 0.17, 0.18, 0.18g in ES, sNP-1, and TSP-2 treated mice, respectively. Tumor weight in mice treated with all three inhibitors was further reduced to 0.03g. Histological analyses confirmed antiangiogenic activity by inhibition of microvessel density in treated tumors. In a metastastic model treatment with angiogenic inhibitors induced a significant reduction in size and number of lung metastases with additive effects when factors were used in combination. Conclusions: We conclude that combination therapy targeting multiple angiogenic pathways has synergistic activity and could help to avoid resistance to single inhibitors in tumor treatment. No significant financial relationships to disclose.


2009 ◽  
Vol 96 (3) ◽  
pp. 682a
Author(s):  
Aydin Tay ◽  
William G. Mayhan ◽  
Denise Arrick ◽  
Chun-Hong Shao ◽  
Hong Sun ◽  
...  

2004 ◽  
Vol 15 (4) ◽  
pp. 321-325 ◽  
Author(s):  
Kirsten Peters ◽  
Ronald E. Unger ◽  
C. James Kirkpatrick ◽  
Antonietta M. Gatti ◽  
Emanuela Monari

2019 ◽  
Vol 126 (5) ◽  
pp. 1242-1249
Author(s):  
Jamie G. Hijmans ◽  
Kelly Stockelman ◽  
Ma’ayan Levy ◽  
L. Madden Brewster ◽  
Tyler D. Bammert ◽  
...  

The aims of this study were twofold. The first was to determine if human immunodeficiency virus (HIV)-1 glycoprotein (gp) 120 and transactivator of transcription (Tat) stimulate the release of endothelial microvesicles (EMVs). The second was to determine whether viral protein-induced EMVs are deleterious to endothelial cell function (inducing endothelial cell inflammation, oxidative stress, senescence and increasing apoptotic susceptibility). Human aortic endothelial cells (HAECs) were treated with recombinant HIV-1 proteins Bal gp120 (R5), Lav gp120 (X4), or Tat. EMVs released in response to each viral protein were isolated and quantified. Fresh HAECs were treated with EMVs generated under control conditions and from each of the viral protein conditions for 24 h. EMV release was higher ( P < 0.05) in HAECs treated with R5 (141 ± 21 MV/µl),X4 (132 ± 20 MV/µl), and Tat (130 ± 20 MV/µl) compared with control (61 ± 13 MV/µl). Viral protein EMVs induced significantly higher endothelial cell release of proinflammatory cytokines and expression of cell adhesion molecules than control. Reactive oxygen species production was more pronounced ( P < 0.05) in the R5-, X4- and Tat-EMV-treated cells. In addition, viral protein-stimulated EMVs significantly augmented endothelial cell senescence and apoptotic susceptibility. Concomitant with these functional changes, viral protein-stimulated EMVs disrupted cell expression of micro-RNAs 34a, 126, 146a, 181b, 221, and miR-Let-7a ( P < 0.05). These results demonstrate that HIV-1 gp120 and Tat stimulate microvesicle release from endothelial cells, and these microvesicles confer pathological effects on endothelial cells by inducing inflammation, oxidative stress, and senescence as well as enhancing susceptibility to apoptosis. Viral protein-generated EMVs may contribute to the increased risk of vascular disease in patients with HIV-1.NEW & NOTEWORTHY Human immunodeficiency virus (HIV)-1-related proteins glycoprotein (gp) 120 and transactivator of transcription (Tat)-mediated endothelial damage and dysfunction are poorly understood. Endothelial microvesicles (EMVs) serve as indicators and potent mediators of endothelial dysfunction. In the present study we determined if HIV-1 R5- and X4-tropic gp120 and Tat stimulate EMV release in vitro and if viral protein-induced EMVs are deleterious to endothelial cell function. gp120 and Tat induced a marked increase in EMV release. Viral protein-induced EMVs significantly increased endothelial cell inflammation, oxidative stress, senescence, and apoptotic susceptibility in vitro. gp120- and Tat-derived EMVs promote a proinflammatory, pro-oxidative, prosenescent, and proapoptotic endothelial phenotype and may contribute to the endothelial damage and dysfunction associated with gp120 and Tat.


2008 ◽  
Vol 294 (2) ◽  
pp. R467-R476 ◽  
Author(s):  
Chun Yang ◽  
Bupe R. Mwaikambo ◽  
Tang Zhu ◽  
Carmen Gagnon ◽  
Josiane Lafleur ◽  
...  

Recent studies have demonstrated that lymphocyte-derived microparticles (LMPs) impair endothelial cell function. However, no data currently exist regarding the contribution of LMPs in the regulation of angiogenesis. In the present study, we investigated the effects of LMPs on angiogenesis in vivo and in vitro and demonstrated that LMPs strongly suppressed aortic ring microvessel sprouting and in vivo corneal neovascularization. In vitro, LMPs considerably diminished human umbilical vein endothelial cell survival and proliferation in a concentration-dependent manner. Mechanistically, the antioxidants U-74389G and U-83836E were partially protective against the antiproliferative effects of LMPs, whereas the NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium significantly abrogated these effects. Moreover, LMPs increased not only the expression of the NOX subunits gp91phox, p22phox, and p47phox, but also the production of ROS and NOX-derived superoxide (O2−). Importantly, LMPs caused a pronounced augmentation in the protein expression of the CD36 antiangiogenic receptor while significantly downregulating the protein levels of VEGF receptor type 2 and its downstream signaling mediator, phosphorylated ERK1/2. In summary, LMPs potently suppress neovascularization in vivo and in vitro by augmenting ROS generation via NOX and interfering with the VEGF signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document