Evolutionary history of the tribe Astereae in the Flora Iranica area: Systematic implications

Phytotaxa ◽  
2018 ◽  
Vol 379 (1) ◽  
pp. 95
Author(s):  
TAYYEBEH FARHANI ◽  
SHAHROKH KAZEMPOUR-OSALOO ◽  
HASSAN ZARE-MAIVAN ◽  
VALIOLLAH MOZAFFARIAN

The present study reconstructs the phylogenetic relationships of the tribe with emphasis on Psychrogeton using both nuclear (ITS, ETS) and chloroplast (trnL intron and trnL-trnF intergenic spacer) markers. Divergence times for main lineages were estimated using BEAST analysis. Based on results of molecular analyses, tribe Astereae is circumscribed here as containing 16 genera and 38 species and comprising strongly supported five major clades: Aster, Chamaegeron, Erigeron, Galatella and Psychrogeton. Among the Eurasian asteroid taxa, Aster bachtiaricus formed the basal most diverging lineage far distantly from the Aster s.str. clade. Lachnophllum and Chamaegeron are sister taxa in nuclear tree, although weakly united in plastid topology. Galatella with the inclusion of Crinitina (= Crinitaria) constitutes a well-supported clade, which along with Tripolium forms the Galatella group. Eurasian Erigeron species were derived within the Erigeron clade. Erigeron uniflorus subsp. daenensis and subsp. elborsensis are distinct from the type subspecies and are resurrected here as species in their own right. Our analyses of the datasets revealed that all examined species of Psychrogeton, except P. obovatus, emerged in a single clade comprising four distinct subclades. Molecular dating analyses indicate that tribe Astereae originated in the Late Eocene at 38.6 Ma. The most genera of Astereae diverged during the Middle Miocene whereas the diversification of lineages began mostly through the Pliocene and Pleistocene. On the basis of the molecular data as well as the morphological characteristics, Aster bachtiaricus was elevated to the generic rank and this new monospecific genus was named Iranoaster. Psychrogeton obovatus was treated as a member of the recently established genus Neobrachyactis. The conflicting position of some taxa including Lachnophyllum gossypinum, Dichrocephala, Myriactis and Asterothamnus in nuclear and plastid trees might be the result of ancient hybridization/introgression events.

Zootaxa ◽  
2011 ◽  
Vol 3134 (1) ◽  
pp. 1 ◽  
Author(s):  
M. STELLA COLOMBA ◽  
ARMANDO GREGORINI ◽  
FABIO LIBERTO ◽  
AGATINO REITANO ◽  
SALVATORE GIGLIO ◽  
...  

Helix mazzullii De Cristofori & Jan, 1832 s.l.(Pulmonata, Stylommatophora, Helicidae) is an endemic, rupicolous, saxicavous taxon of northwestern Sicily. Its populations are vulnerable and it is of great ecological significance. However, its taxonomy, phylogeny and biogeography are still uncertain. The present paper reports on a comprehensive analysis of morphological diagnostic characters (shell and genitalia) joined by the molecular study of two mitochondrial (16S rRNA and 12S rRNA) and one nuclear (ITS-2) partial gene sequences, investigated by individual segment analyses or combining the three gene fragments with a concatenate analysis. Our results corroborated the hypothesis that this species is rather a group (i.e., the mazzullii group) including three different taxa (mazzullii, cephalaeditana and insolida) recognized as species. Moreover, molecular dating of lineages suggests that this complex might have occurred long before the Messinian salinity crisis. Finally, peculiar morphological and ecological features along with molecular data strongly support the proposal to re-introduce the genus Erctella Monterosato, 1894 for the H. mazzullii complex. Synonyms and bibliographic references are reported in the systematic part; collection records are listed in Appendix 1.


Genome ◽  
2011 ◽  
Vol 54 (12) ◽  
pp. 986-992 ◽  
Author(s):  
Huan Wang ◽  
Dongfa Sun ◽  
Genlou Sun

The phylogeny of diploid Hordeum species has been studied using both chloroplast and nuclear gene sequences. However, the studies of different nuclear datasets of Hordeum species often arrived at similar conclusions, whereas the studies of different chloroplast DNA data generally resulted in inconsistent conclusions. Although the monophyly of the genus is well supported by both morphological and molecular data, the intrageneric phylogeny is still a matter of controversy. To better understand the evolutionary history of Hordeum species, two chloroplast gene loci (trnD-trnT intergenic spacer and rps16 gene) and one nuclear marker (thioreoxin-like gene (HTL)) were used to explore the phylogeny of Hordeum species. Two obviously different types of trnD-trnT sequences were observed, with an approximately 210 base pair difference between these two types: one for American species, another for Eurasian species. The trnD-trnT data generally separated the diploid Hordeum species into Eurasian and American clades, with the exception of Hordeum marinum subsp. gussoneanum. The rps16 data also grouped most American species together and suggested that Hordeum flexuosum has a different plastid type from the remaining American species. The nuclear gene HTL data clearly divided Hordeum species into two clades: the Xu + H genome clade and the Xa + I genome clade. Within clades, H genome species were well separated from the Xu species, and the I genome species were well separated from the Xa genome species. The incongruence between chloroplast and nuclear datasets was found and discussed.


2019 ◽  
Author(s):  
Andrew C. Rozefelds ◽  
Mary E. Dettmann ◽  
Anita K. Milroy ◽  
Andrew Hammond ◽  
H. Trevor Clifford ◽  
...  

A new fossil flora from central Queensland, of late Eocene or early Oligocene age, has yielded a diverse assemblage of flowering plants and ferns, including the first evidence of horsetails (Equisetum L.) from the Cenozoic of Australia. The fossils assigned to Equisetum are based on a stem fragment, 2–3mm in diameter, and spreading leaf sheath and diaphragm. The leaf sheath is interpreted to consist of ~24–30 leaves. The spatial arrangement of regularly arranged depressions in a section of the outer cortex is interpreted as evidence of the leaf vascular traces, and indicates a similar number of vascular traces. This specimen provides the youngest evidence of the genus from Australia and indicates that Equisetum survived for at least another 50 million years after it was thought to be extinct in Australia. Whereas molecular data for extant species of Equisetum collectively suggest a comparatively recent origin and radiation, the fossil record of the genus indicates a significantly longer and more complex history. Fossils, such as the new specimen from Makowata, Queensland, will, therefore, play a key role in understanding the history and past distribution of Equisetum in Australia. A key challenge is to assemble and characterise the morphological traits of these living and fossil plants to better understand the origins, history and radiation of this remarkable group of euphyllophytes.


Phytotaxa ◽  
2018 ◽  
Vol 357 (2) ◽  
pp. 107 ◽  
Author(s):  
C. THOMAS PHILBRICK ◽  
BRAD R. RUHFEL ◽  
CLAUDIA P. BOVE

We conducted a phylogenetic study of neotropical subfamily Podostemoideae with a focus on Rhyncholacis and the monotypic Macarenia using molecular data (plastid: rbcL, trnL intron; nuclear: ITS). Our results placed the five included species of Rhyncholacis, one of which is newly described herein, in a moderately well supported (73 BP) clade with M. clavigera. These results support the transfer of M. clavigera to Rhyncholacis (R. clavigera); the nomenclatural changes are made. In addition, a new species of Rhyncholacis (R. paulana C.T. Philbrick & C.P. Bove) is illustrated and described. Rhyncholacis paulana is distinguished from all other species in the genus by its simple pinnately lobed leaf, which is fleshy and undulate. All other species of Rhyncholacis have leaves that are pinnately lobed, the lobes of which are repeatedly divided, or pinnately compound and characterized by finely dissected pinnate segments.


Lankesteriana ◽  
2013 ◽  
Author(s):  
Rafael Arévalo ◽  
Kenneth M. Cameron

The Neotropical orchid genus Mormolyca Fenzl, as currently circumscribed, encompasses a diverse group of ca. 27species. Many of these were included traditionally in Maxillaria sect. Rufescens, when similarity of floral morphology was considered foremost in their classification rather than the evolutionary history of the taxa. In order to begin revising species delimitation and clarifying the evolution and biology of the genus, we present a phylogenetic hypothesis using sequence data from five plastid loci (rpoC1, matK gene and flanking trnK intron, atpB-rbcL intergenic spacer, and the 3’ portion of ycf1) and the nuclear ribosomal internal and external transcribed spacers (ITS, ETS). Resulting trees using both Bayesian and parsimony inference are congruent with each other, and generally well resolved. Based on current level of sampling across Maxillariinae, these molecular data support the monophyly of Mormolyca and shed light on the interspecific phylogenetic patterns within the genus. These include an early divergent paraphyletic grade of Mormolyca species successively sister to a clade with at least two definable subclades within. The latter are characterized by two different flower morphologies that are likely related to their pollination systems. Although not all relationships within the genus are fully resolved or supported, these results offer a first glimpse into the phylogeny of a small group of epiphytic orchids characterized by an unusually high level of variable vegetative characters, floral fragrance profiles, and pollination systems.


2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
Kun-Li Xiang ◽  
Andrey S. Erst ◽  
Jian Yang ◽  
Huan-Wen Peng ◽  
Rosa del C. Ortiz ◽  
...  

The evolutionary history of organisms with poor dispersal abilities usually parallels geological events. Collisions of the Indian and Arabian plates with Eurasia greatly changed Asian topography and affected regional and global climates as well as biotic evolution. However, the geological evolution of Asia related to these two collisions remains debated. Here, we used Eranthis , an angiosperm genus with poor seed dispersal ability and a discontinuous distribution across Eurasia, to shed light on the orogenesis of the Qinghai–Tibetan, Iranian and Mongolian Plateaus. Our phylogenetic analyses show that Eranthis comprises four major geographical clades: east Qinghai–Tibetan Plateau clade (I-1), North Asian clade (I-2), west Qinghai–Tibetan Plateau clade (II-1) and Mediterranean clade (II-2). Our molecular dating and biogeographic analyses indicate that within Eranthis , four vicariance events correlate well with the two early uplifts of the Qinghai–Tibetan Plateau during the Late Eocene and the Oligocene–Miocene boundary and the two uplifts of the Iranian Plateau during the Middle and Late Miocene. The origin and divergence of the Mongolian Plateau taxa are related to the two uplifts of the Mongolian Plateau during the Middle and Late Miocene. Additionally, our results are in agreement with the hypothesis that the central part of Tibet only reached an altitude of less than 2.3 km at approximately 40 Ma. This study highlights that organismal evolution could be related to the formation of the three great Asian plateaus, hence contributing to the knowledge on the timing of the key tectonic events in Asia.


2018 ◽  
Vol 96 (3) ◽  
pp. 443 ◽  
Author(s):  
Andrés Ernesto Ortiz-Rodriguez ◽  
Eydi Yanina Guerrero ◽  
Juan Francisco Ornelas

<p><strong>Background:</strong> The phylogenetic relationships of the <em>Bursera</em>-host specialist <em>Psittacanthus nudus</em>, <em>P. palmeri </em>and <em>P. sonorae</em> (Loranthaceae) remain uncertain. These mistletoe species exhibit morphological and phenological innovations probably related to their dry habitats, so that determining their phylogenetic position is key to the understanding of factors associated with the morphological evolution within <em>Psittacanthus</em>.</p><p><strong>Questions:</strong> (1) Is the evolution of some morphological innovations in the <em>Bursera</em>-host specialists associated with the ecological conditions linked to host diversification? (2) Does time of diversification in both lineages coincide?<strong></strong></p><p><strong>Study species:</strong> Fourteen species of <em>Psittacanthus</em>.</p><p><strong>Methods: </strong>Sequences of nuclear (ITS) and plastid (<em>trnL-trnF</em>) markers are analyzed with Bayesian inference, maximum likelihood and maximum parsimony methods, and molecular dating under a Bayesian approach estimated to elucidate the phylogenetic position and divergence timing of the<em> Bursera</em>-host specialists.</p><p><strong>Results:</strong> The <em>Bursera</em>-host specialists form a strongly supported clade, named here the ‘<em>Bursera</em> group’. The divergence time for the <em>Bursera</em>-host specialists was estimated at 7.89 Ma. Interestingly, phylogenetic relationships between <em>P. nudus</em> and <em>P. palmeri</em>, as currently circumscribed, were not fully resolved, making <em>P. palmeri</em> paraphyletic.</p><p><strong>Conclusions</strong>: Based on these results, the plants collected by type locality of <em>P. nudus</em> in Honduras should be named <em>P. palmeri</em>. The seasonal deciduousness of <em>P. palmeri </em>(including <em>P. nudus</em>) and morphology of <em>P. sonorae</em> (small size, fleshy leaves) are clearly adaptations to dry ecosystems where these species have lived for a long time. In parallel, the evolutionary history of these mistletoes seems to be correlated with the evolutionary history and diversification patterns of <em>Bursera</em>.</p>


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3373 ◽  
Author(s):  
Friðgeir Grímsson ◽  
Paschalia Kapli ◽  
Christa-Charlotte Hofmann ◽  
Reinhard Zetter ◽  
Guido W. Grimm

BackgroundWe revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages.MethodsFossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios.ResultsThe fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases.DiscussionWith the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks.


2017 ◽  
Vol 30 (1) ◽  
pp. 105 ◽  
Author(s):  
Nasim Saadati ◽  
Maryam Khoshsokhan Mozaffar ◽  
Mahboubeh Sherafati ◽  
Shahrokh Kazempour Osaloo

The phylogeny of Heterocaryum and Suchtelenia was examined using sequence data from the internal transcribed spacer region of the nuclear rDNA (ITS) and plastid trnL intron and trnL–trnF intergenic spacer (trnL–F) regions. Results indicated that Heterocaryum is non-monophyletic because of the inclusion of Suchtelenia calycina (C.A.Mey.) A.DC. Heterocaryum laevigatum (Kar. & Kir.) A.DC. formed a distinct branch sister to S. calycina and remaining Heterocaryum species. Hence, all species of Heterocaryum except H. laevigatum (type species of the genus) are transferred to a new genus, Pseudoheterocaryum. Taxonomic descriptions are presented for Pseudoheterocaryum and Heterocaryum, as well as a diagnostic key to the three genera included in the present study.


2021 ◽  
Author(s):  
Hervé Sauquet ◽  
Santiago Ramírez-Barahona ◽  
Susana Magallón

The origin of flowering plants (angiosperms) was one of the most transformative events in the history of our planet. Despite considerable interest from multiple research fields, numerous questions remain, including the age of the group as a whole. Recent studies have reported a perplexing range of estimates for the crown-group age of angiosperms, from ca. 140 Ma (Early Cretaceous) to 270 Ma (Permian). Both ends of the spectrum are now supported by both quantitative analyses of the fossil record and fossil-calibrated molecular dating analyses. Here, we first clarify and distinguish among the three ages of angiosperms: the age of their divergence with acrogymnosperms (stem age), the age(s) of emergence of their unique, distinctive features including flowers (morphological age), and the age of the most recent common ancestor of all their living species (crown age). We then demonstrate, based on recent studies, that fossil-calibrated molecular dating estimates of the crown-group age of angiosperms have little to do with either the amount of molecular data or the number of internal fossil calibrations included. Instead, we argue that this age is almost entirely conditioned by its own prior. Lastly, we discuss which future discoveries or novel types of analyses are most likely to bring more definitive answers. In the meantime, we propose that the age of angiosperms is best described as unknown (140–270 Ma) and that future work that depends on the time scale of flowering plant diversification be designed to integrate over this vexing uncertainty.


Sign in / Sign up

Export Citation Format

Share Document