Phylogenetic and morphological analyses of species of the Entolomataceae (Agaricales, Basidiomycota) with cuboid basidiospores

Phytotaxa ◽  
2019 ◽  
Vol 391 (1) ◽  
pp. 1
Author(s):  
FERNANDA KARSTEDT ◽  
MARINA CAPELARI ◽  
TIMOTHY J. BARONI ◽  
DAVID L. LARGENT ◽  
SARAH E. BERGEMANN

The generic or subgeneric delimitation by morphology of the Entolomataceae (Agaricales, Basidiomycota) is often based on the habit and external features of the basidiomata, the hyphal arrangement of the pileus surface and the shape of the basidiospores, which possess either bumps or undulate-pustules forming short ridges, or longitudinal ridges or are obviously angular with four to nine angles in profile view. Here, we examine the basidiospore shape of species in the /Entoloma clade described as cuboid to evaluate its importance in taxonomy using both phylogenetic and detailed analyses of the shape with Scanning Electron Microscopy. Our phylogenetic analyses support the placement of species with cuboid basidiospores into one of two clades. Based on this separation, two new subgenera of Entoloma are proposed: Cuboeccilia with an omphalinoid habit and fusoid cystidia and Cubospora which has a mycenoid to tricholomatoid habit and clavate, rarely fusoid cheilocystidia.

Nematology ◽  
2008 ◽  
Vol 10 (5) ◽  
pp. 663-678 ◽  
Author(s):  
Zengqi Zhao ◽  
Weimin Ye ◽  
Robin M. Giblin-Davis ◽  
Dongmei Li ◽  
W. Kelley Thomas ◽  
...  

Abstract Six isolates of Australian Aphelenchoidoidea, viz., Laimaphelenchus preissii from native coniferous Callitris preissii trees, L. australis from the common pine plantation trees of Pinus radiata and P. pinaster and L. heidelbergi and two morphospecies of Aphelenchoides (H1 and K1) and Cryptaphelenchus sp. (K2) from diseased P. radiata trees, were studied using light microscopy, scanning electron microscopy and phylogenetic analyses of nearly full length sequences of SSU, D2/D3 expansion segments of LSU rDNA and a fragment of cytochrome oxidase subunit I (COI). Bayesian phylogenetic analyses of SSU, LSU and COI of the six nematode species revealed that none of these Australian aphelenchoidoids was inferred to be closely related to Bursaphelenchus. The selected isolates of Aphelenchoides and Laimaphelenchus used in this study were paraphyletic in all molecular analyses. Cryptaphelenchus sp. (K2) was inferred to be sister to Seinura with SSU sequences.


Mycotaxon ◽  
2020 ◽  
Vol 135 (3) ◽  
pp. 589-612
Author(s):  
Fernanda Karstedt ◽  
Sarah E. Bergemann ◽  
Marina Capelari

Five new species of Nolanea (Entolomataceae, Agaricales)—N. albertinae, N. atropapillata, N. pallidosalmonea, N. parvispora, and N. tricholomatoidea—were collected from the São Paulo metropolitan region. Phylogenetic analyses based on partial sequences of the mitochondrial small subunit (mtSSU), nuclear large subunit (nLSU) and second largest RNA polymerase subunit (rpb2), confirm that all these species belong to Nolanea. Morphological descriptions, comments, illustrations, scanning electron microscopy and color photos are included.


2007 ◽  
Vol 73 (8) ◽  
pp. 2718-2726 ◽  
Author(s):  
Karolina Kolodziej ◽  
Thorsten Stoeck

ABSTRACT Revealing the cellular identity of organisms behind environmental eukaryote rRNA gene sequences is a major objective in microbial diversity research. We sampled an estuarine oxygen-depleted microbial mat in southwestern Norway and retrieved an 18S rRNA gene signature that branches in the MAST-12 clade, an environmental marine stramenopile clade. Detailed phylogenetic analyses revealed that MAST-12 branches among the heterotrophic stramenopiles as a sister of the free-living Bicosoecida and the parasitic genus Blastocystis. Specific sequence signatures confirmed a relationship to these two groups while excluding direct assignment. We designed a specific oligonucleotide probe for the target sequence and detected the corresponding organism in incubation samples using fluorescence in situ hybridization (FISH). Using the combined FISH-scanning electron microscopy approach (T. Stoeck, W. H. Fowle, and S. S. Epstein, Appl. Environ. Microbiol. 69:6856-6863, 2003), we determined the morphotype of the target organism among the very diverse possible morphologies of the heterotrophic stramenopiles. The unpigmented cell is spherical and about 5 μm in diameter and possesses a short flagellum and a long flagellum, both emanating anteriorly. The long flagellum bears mastigonemes in a characteristic arrangement, and its length (30 μm) distinguishes the target organism from other recognized heterotrophic stramenopiles. The short flagellum is naked and often directed posteriorly. The organism possesses neither a lorica nor a stalk. The morphological characteristics that we discovered should help isolate a representative of a novel stramenopile group, possibly at a high taxonomic level, in order to study its ultrastructure, physiological capabilities, and ecological role in the environment.


Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
J.N. Ramsey ◽  
D.P. Cameron ◽  
F.W. Schneider

As computer components become smaller the analytical methods used to examine them and the material handling techniques must become more sensitive, and more sophisticated. We have used microbulldozing and microchiseling in conjunction with scanning electron microscopy, replica electron microscopy, and microprobe analysis for studying actual and potential problems with developmental and pilot line devices. Foreign matter, corrosion, etc, in specific locations are mechanically loosened from their substrates and removed by “extraction replication,” and examined in the appropriate instrument. The mechanical loosening is done in a controlled manner by using a microhardness tester—we use the attachment designed for our Reichert metallograph. The working tool is a pyramid shaped diamond (a Knoop indenter) which can be pushed into the specimen with a controlled pressure and in a specific location.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Sign in / Sign up

Export Citation Format

Share Document