scholarly journals Neotypification of Pleurocapsa fuliginosa and epitypification of P. minor (Pleurocapsales): resolving a polyphyletic cyanobacterial genus

Phytotaxa ◽  
2019 ◽  
Vol 392 (4) ◽  
pp. 245 ◽  
Author(s):  
SERGEI SHALYGIN ◽  
KATHERINE J. KAVULIC ◽  
NICOLE PIETRASIAK ◽  
MARKÉTA BOHUNICKÁ ◽  
MELISSA A. VACCARINO ◽  
...  

Strains with complete morphological match to Pleurocapsa fuliginosa and P. minor were isolated from Oahu, with another strain matching P. minor isolated from a wet rock face in Utah. Phylogenetically these baeocyte and pseudofilament producing strains fell in a single well-supported clade among a number of pleurocapsalean strains.  They were sister to a clade of baeocyte-producing strains that lack the ability to form psuedofilaments and likely belong in an as-yet-to-be-described genus. Strains putatively named Pleurocapsa are scattered throughout the Pleurocapsales and Chroococcales, indicating a need for clear definition of the genus so that revisionary work and alpha-level taxonomy can move forward. To satisfy this need, P. fuliginosa HA4302-MV1 and P. minor HA4230-MV1 were chosen as neotype and epitype, respectively, establishing the genus based on molecular sequence data. In addition to the distinctive morphology of the genus, all Pleurocapsa species for which 16S-23S ITS regions are available have an unusually long, branched D5 helix at the termination of the ITS region. The sister clade of strains that lack the ability to form pseudofilaments also possess an unusually long and branched D5 helix as well, suggesting that this feature of the ITS region may be a family-level synapomorphy.

Zootaxa ◽  
2020 ◽  
Vol 4811 (1) ◽  
pp. 1-63
Author(s):  
KATHRYN M. WEGLARZ ◽  
CHARLES R BARTLETT

The planthopper genus Chionomus Fennah, 1971 (Hemiptera: Fulgoroidea: Delphacidae) currently includes three Neotropical species, removed from the polyphyletic genus Delphacodes Fieber, 1866. Morphological and molecular evidence further redefine Chionomus to include ten additional species (eight species removed from Delphacodes, two described as new, viz. Chionomus dolonus n. sp. and C. herkos n. sp.), with another four species synonymized. Phylogenetic analyses of morphological and molecular sequence data of the mitochondrial gene Cytochrome Oxidase I provide support for the monophyly of Chionomus. We use a mixed model Bayesian optimality criterion to define phylogenetic relationships among Chionomus and support paraphyly of the original definition of Chionomus (with respect to Delphacodes) and monophyly of the revised genus. 


2001 ◽  
Vol 79 (10) ◽  
pp. 1195-1201 ◽  
Author(s):  
J L Golden ◽  
Y D Kim ◽  
J F Bain

The recent transfer of the Queen Charlotte island endemic, Senecio newcombei Greene (Senecioneae: Asteraceae), to the Asiatic genus Sinosenecio extends the biogeographic range of Sinosenecio to North America and introduces a large amphi-Beringian gap in the distribution of the genus. However, the closely related genus Tephroseris includes a number of North American species with distributions in the vicinity of S. newcombei. We provide molecular sequence data from the ITS region of nuclear ribosomal DNA and micromorphological data from anther endothecial cells that indicate S. newcombei is closely related to North American Tephroseris species. However, the overall relationship between Sinosenecio and Tephroseris remains unresolved, so that transfer of S. newcombei to Tephroseris is not proposed.Key words: Tephroseris, Sinosenecio, phylogeny, ITS, anther endothecial cells.


Phytotaxa ◽  
2019 ◽  
Vol 403 (2) ◽  
pp. 86
Author(s):  
SU-MIN HAN ◽  
HYOSIG WON ◽  
CHAE EUN LIM

A new species of Halenia (Gentianaceae) from Korea, H. coreana S.M.Han, H.Won & C.E.Lim, is recognized based on morphological and molecular data, and its description and illustration are provided. It is distinct from H. corniculata in having long, narrower and incurved spurs and attenuated leaf apex. Molecular sequence data of nuclear ribosomal ITS region, nuclear XDH gene, and chloroplast rbcL gene also strongly support its species status.


2004 ◽  
Vol 36 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Magdalena OPANOWICZ ◽  
Martin GRUBE

Molecular sequence data of the nuclear ITS region was used to investigate the diversity of photobionts in Polish samples of Flavocetraria nivalis. The samples came both from alpine habitats, as well as from lowland localities near the coast. All green algal symbionts were identified as members of the Trebouxia simplex aggregate. These were compared with those of additional samples from Flavocetraria nivalis collected in different parts of Europe and also with photobionts assigned to T. simplex from other lichens. Within the T. simplex aggregate, the Trebouxia ITS sequences from F. nivalis formed four clades. In the Polish lowland populations only a single clade of T. simplex was detected which also occurs in Polish mountains, south Sweden and Austria. A further clade of T. simplex is present in F. nivalis from Polish mountains and is also known from F. nivalis further north in Scandinavia and Greenland, as well as from other lichens in Sweden, the Austrian Alps, and Antarctica.


2003 ◽  
Vol 16 (1) ◽  
pp. 19 ◽  
Author(s):  
Daniel J. Murphy ◽  
Joseph T. Miller ◽  
Randall J. Bayer ◽  
Pauline Y. Ladiges

The largest monophyletic group within Acacia is subgenus Phyllodineae, with more than 950 predominately Australian species, the majority characterised by adult foliage consisting of phyllodes. Molecular sequence data from the internal transcribed spacers (ITS) of the nuclear ribosomal DNA repeat were used to investigate the monophyly of seven sections within the subgenus. A nested PCR approach was used to amplify the ITS region. Fifty-one species representative of all sections were sequenced together with one outgroup taxon Lysiloma divaricata (Ingeae).Phylogenetic parsimony analysis suggested that there are two main clades within Phyllodineae but that only one section, Lycopodiifoliae, is apparently monophyletic. In one of the main clades, Lycopodifoliae is related to some taxa in sections Alatae and Pulchellae and some members of section Phyllodineae. In the second main clade, sections Juliflorae, Plurinerves and Botrycephalae cluster with other members of section Phyllodineae. The two sections that are characterised by bipinnate foliage, Botrycephalae and Pulchellae, are nested within phyllodinous clades, indicating that at least two separate reversals to bipinnate leaves have occurred. Botrycephalae is paraphyletic with respect to taxa from section Phyllodineae that have single-nerved phyllodes and racemose inflorescences.


Phytotaxa ◽  
2014 ◽  
Vol 176 (1) ◽  
pp. 219 ◽  
Author(s):  
ASHA J. DISSANAYAKE ◽  
RUVISHIKA S. JAYAWARDENA ◽  
SARANYAPHAT BOONMEE ◽  
KASUN M. THAMBUGALA ◽  
QING TIAN ◽  
...  

The family Myriangiaceae is relatively poorly known amongst the Dothideomycetes and includes genera which are saprobic, epiphytic and parasitic on the bark, leaves and branches of various plants. The family has not undergone any recent revision, however, molecular data has shown it to be a well-resolved family closely linked to Elsinoaceae in Myriangiales. Both morphological and molecular characters indicate that Elsinoaceae differs from Myriangiaceae. In Elsinoaceae, small numbers of asci form in locules in light coloured pseudostromata, which form typical scab-like blemishes on leaf or fruit surfaces. The coelomycetous, “Sphaceloma”-like asexual state of Elsinoaceae, form more frequently than the sexual state; conidiogenesis is phialidic and conidia are 1-celled and hyaline. In Myriangiaceae, locules with single asci are scattered in a superficial, coriaceous to sub-carbonaceous, black ascostromata and do not form scab-like blemishes. No asexual state is known. In this study, we revisit the family Myriangiaceae, and accept ten genera, providing descriptions and discussion on the generic types of Anhellia, Ascostratum, Butleria, Dictyocyclus, Diplotheca, Eurytheca, Hemimyriangium, Micularia, Myriangium and Zukaliopsis. The genera of Myriangiaceae are compared and contrasted. Myriangium duriaei is the type species of the family, while Diplotheca is similar and may possibly be congeneric. The placement of Anhellia in Myriangiaceae is supported by morphological and molecular data. Because of similarities with Myriangium, Ascostratum (A. insigne), Butleria (B. inaghatahani), Dictyocyclus (D. hydrangea), Eurytheca (E. trinitensis), Hemimyriangium (H. betulae), Micularia (M. merremiae) and Zukaliopsis (Z. amazonica) are placed in Myriangiaceae. Molecular sequence data from fresh collections is required to confirm the relationships and placement of the genera in this family.


Zootaxa ◽  
2017 ◽  
Vol 4238 (1) ◽  
pp. 58 ◽  
Author(s):  
ATSUSHI MOCHIZUKI ◽  
CHARLES S. HENRY ◽  
PETER DUELLI

The small lacewing genus Apertochrysa comprises species from Africa, Asia and Australia. All lack a tignum, but otherwise resemble distantly related genera. We show that Apertochrysa does not form a monophyletic clade, based on analyses of molecular sequence data and morphological traits such as the presence and shape of the male gonapsis, wing venation, and larval setae. Apertochrysa kichijoi forms a clade with Eremochrysa, Suarius and Chrysemosa, whereas A. albolineatoides belongs to a clade that includes Cunctochrysa. Apertochrysa albolineatoides should become a new combination as Cunctochrysa albolineatoides, while A. kichijoi will have to be transferred to a new genus. The Australian A. edwardsi, the African A. eurydera and the type species of the genus Apertochrysa, A. umbrosa, join the large Pseudomallada group. Relationships of A. umbrosa are less certain, because for it we could amplify only one of the three nuclear genes used in the overall analysis. However, in all morphological traits tested, that species strongly resembles A. edwardsi and A. eurydera and thus is very likely just another exceptional Pseudomallada lacking a tignum. The fate of the genus name Apertochrysa depends on additional molecular and morphological analyses of A. umbrosa. 


2009 ◽  
Vol 364 (1527) ◽  
pp. 2197-2207 ◽  
Author(s):  
Peter G. Foster ◽  
Cymon J. Cox ◽  
T. Martin Embley

The three-domains tree, which depicts eukaryotes and archaebacteria as monophyletic sister groups, is the dominant model for early eukaryotic evolution. By contrast, the ‘eocyte hypothesis’, where eukaryotes are proposed to have originated from within the archaebacteria as sister to the Crenarchaeota (also called the eocytes), has been largely neglected in the literature. We have investigated support for these two competing hypotheses from molecular sequence data using methods that attempt to accommodate the across-site compositional heterogeneity and across-tree compositional and rate matrix heterogeneity that are manifest features of these data. When ribosomal RNA genes were analysed using standard methods that do not adequately model these kinds of heterogeneity, the three-domains tree was supported. However, this support was eroded or lost when composition-heterogeneous models were used, with concomitant increase in support for the eocyte tree for eukaryotic origins. Analysis of combined amino acid sequences from 41 protein-coding genes supported the eocyte tree, whether or not composition-heterogeneous models were used. The possible effects of substitutional saturation of our data were examined using simulation; these results suggested that saturation is delayed by among-site rate variation in the sequences, and that phylogenetic signal for ancient relationships is plausibly present in these data.


Phytotaxa ◽  
2021 ◽  
Vol 514 (3) ◽  
pp. 247-260
Author(s):  
KASUN THAMBUGALA ◽  
DINUSHANI DARANAGAMA ◽  
SAGARIKA KANNANGARA ◽  
THENUKA KODITUWAKKU

Endophytic fungi are a diverse group of microorganisms that live asymptomatically in healthy tissues of host and they have been reported from all kinds of plant tissues such as leaves, stems, roots, flowers, and fruits. In this study, fungal endophytes associated with tea leaves (Camellia sinensis) were collected from Kandy, Kegalle, and Nuwara Eliya districts in Sri Lanka and were isolated, characterized, and identified. A total of twenty endophytic fungal isolates belonging to five genera were recovered and ITS-rDNA sequence data were used to identify them. All isolated endophytic fungal strains belong to the phylum Ascomycota and the majority of these isolates were identified as Colletotrichum species. Phyllosticta capitalensis was the most commonly found fungal endophyte in tea leaves and was recorded in all three districts where the samples were collected. This is the very first investigation on fungal endophytes associated with C. sinensis in Sri Lanka based on molecular sequence data. In addition, a comprehensive account of known endophytic fungi reported worldwide on Camellia sinensis is provided.


Mammalia ◽  
2019 ◽  
Vol 83 (2) ◽  
pp. 180-189 ◽  
Author(s):  
Adam W. Ferguson ◽  
Houssein R. Roble ◽  
Molly M. McDonough

AbstractThe molecular phylogeny of extant genets (Carnivora, Viverridae,Genetta) was generated using all species with the exception of the Ethiopian genetGenetta abyssinica. Herein, we provide the first molecular phylogenetic assessment ofG. abyssinicausing molecular sequence data from multiple mitochondrial genes generated from a recent record of this species from the Forêt du Day (the Day Forest) in Djibouti. This record represents the first verified museum specimen ofG. abyssinicacollected in over 60 years and the first specimen with a specific locality for the country of Djibouti. Multiple phylogenetic analyses revealed conflicting results as to the exact relationship ofG. abyssinicato otherGenettaspecies, providing statistical support for a sister relationship to all other extant genets for only a subset of mitochondrial analyses. Despite the inclusion of this species for the first time, phylogenetic relationships amongGenettaspecies remain unclear, with limited nodal support for many species. In addition to providing an alternative hypothesis of the phylogenetic relationships among extant genets, this recent record provides the first complete skeleton of this species to our knowledge and helps to shed light on the distribution and habitat use of this understudied African small carnivore.


Sign in / Sign up

Export Citation Format

Share Document