Multi-instar descriptions of cave dwelling Erythraeidae (Trombidiformes: Parasitengona) employing an integrative approach

Zootaxa ◽  
2019 ◽  
Vol 4717 (1) ◽  
pp. 137-184 ◽  
Author(s):  
SAMUEL GEREMIAS DOS SANTOS COSTA ◽  
HANS KLOMPEN ◽  
LEOPOLDO FERREIRA DE OLIVEIRA BERNARDI ◽  
LUCIANA CARDOSO GONÇALVES ◽  
DANTE BATISTA RIBEIRO ◽  
...  

The life cycle of Parasitengona includes major morphological changes precluding an instar association based only on the morphology. This makes rearing and/or molecular data necessary to associate the heteromorphic instars. Most of the described species are known from either post larval instars or larva. Following a previous study on Palearctic Erythraeidae, in the present study the instar association was made through an integrative approach including rearing trials and molecular analysis of the cytochrome oxidase I (COI) gene with the Bayesian Generalized Mixed Yule Coalescent (bGMYC) algorithm for species delimitation. Two new cave dwelling Erythraeidae (Trombidiformes: Parasitengona) species are described Lasioerythraeus jessicae sp. nov. and Leptus sidorchukae sp. nov. including all active instars. Additionally, a complete description of the previously unknown adults of Charletonia rocciai Treat & Flechtmann, 1979 is provided with notes on the larva and deutonymph. We also demonstrate experimentally that Ch. rocciai larvae are not attached to the same individual host during the entire feeding stage. We discuss the presence of troglomorphisms in Le. sidorchukae sp. nov.; and the distribution of the species. 

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 290
Author(s):  
Hua-Yan Chen ◽  
Hong-Liang Li ◽  
Hong Pang ◽  
Chao-Dong Zhu ◽  
Yan-Zhou Zhang

The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is an emerging invasive insect pest in China. Hymenopteran parasitoids are the key organisms for suppressing populations of P. solenopsis in the field, and therefore could be used as biological agents. Accurate identification of the associated parasitoids is the critical step to assess their potential role in biological control. In this study, we facilitated the identification of the parasitoid composition of P. solenopsis using an integrated approach of species delimitation, combining morphology with molecular data. Eighteen Hymenoptera parasitoid species belonging to 11 genera of four families are recognized based on morphological examination and molecular species delimitation of the mitochondrial cytochrome c oxidase 1 (COI) gene and the 28S rDNA using the automatic barcode gap discovery (ABGD) and the Bayesian Poisson tree processes model (bPTP). Among these species, eight species are primary parasitoids with Aenasius arizonensis (Girault) (Hymenoptera: Encyrtidae) being the dominant taxon, while the other 10 species are probably hyperparasitoids, with a prevalence of Cheiloneurus nankingensis Li & Xu (Hymenoptera: Encyrtidae). These results indicate that parasitoid wasps associated with P. solenopsis from China are diverse and the integrated taxonomic approach applied in this study could enhance the accurate identification of these parasitoids that should be assessed in future biological control programs.


2020 ◽  
Vol 63 (6) ◽  
pp. 527-535
Author(s):  
Donatella Serio ◽  
Giovanni Furnari ◽  
Yola Metti

AbstractIt was noted that Mediterranean specimens collected at different stations from around Sicily, Italy and referred to as Laurencia dendroidea (as Laurencia majuscula) were similar to the recently described species Laurenciella marilzae. Presented in this study are the results of an integrative approach using both morphology and molecular data (COI-5P + rbcL) to establish which taxon these specimens should be referred to. Molecular analyses show these specimens belong to Laurenciella, and strongly suggest they are within the species L. marilzae. Morphological examinations of these Mediterranean specimens were also detailed and found to support the conclusion that they belong to L. marilzae.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243393
Author(s):  
Lucas Henrique de Almeida ◽  
Pitágoras da Conceição Bispo

The study of complementary sources of biological variation (e.g. morphological, molecular) has allowed a better understanding of biodiversity through the construction of an integrative taxonomy. Using this approach, specimens from the Paranapiacaba Mountains, southeastern Brazil, were studied to update the knowledge on the stonefly family Perlidae from the region, characterize the species, and make associations between nymphs and adults using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. The study also discusses the implications of integrative taxonomy and teneral specimens for the study of South American Perlidae. The molecular data were analyzed using Bayesian inference, Neighbor-joining, and delimiting species methods. Our results revealed that, in general, there was a morphological and molecular congruence between species. In the Paranapiacaba Mountains, three genera and 15 species were recorded: Anacroneuria boraceiensis Froehlich 2004, A. debilis (Pictet 1841) (new record), A. fiorentini De Ribeiro and Froehlich 2007 (new record), A. flintorum Froehlich 2002, A. iporanga Bispo and Froehlich 2004, A. itajaimirim Bispo and Froehlich 2004, A. polita (Burmeister 1913), A. subcostalis Klapálek 1921, A. tupi Bispo and Froehlich 2004 (with a description of the nymph), Kempnyia auberti Froehlich 1996, K. colossica (Navás 1934), K. flava Klapálek 1916, K. neotropica (Jacobson and Bianchi 1905) (including its new junior synonym K. petersorum Froehlich 1996), Kempnyia sp., and Macrogynoplax veneranda Froehlich 1984. COI sequences were obtained for 11 species, five of which had nymphs associated with adults. Among the five associated nymphs, the nymph of A. tupi is described here. The results of this study indicate that the color of adult teneral specimens differs from that of mature specimens. Given this, the synonym of K. neotropica and K. petersorum was proposed since these species have high morphological and molecular similarities and differ only in color patterns. In addition, the previous record of A. petersi Froehlich 2002 from the Paranapiacaba Mountains was invalidated since it was considered a teneral specimen of A. flintorum. These results suggest that the development of an integrative taxonomy is essential to continue advancing the study of Perlidae diversity in South America.


2018 ◽  
Vol 61 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Beatriz N. Torrano-Silva ◽  
Bruno R. Vieira ◽  
Rafael Riosmena-Rodríguez ◽  
Mariana C. Oliveira

AbstractMultiple-marker (COI-5P, UPA,psbA andrbcL-3P) and two algorithmic approaches [automatic barcode gap discovery (ABGD) and Poisson tree process (PTP)] were used for species delimitation of Lithophylloideae in Brazil. The integrative approach was mostly congruent between markers and algorithmic methods of species delimitation, suggesting the occurrence of 24 species. Based on morphology and molecular data,Amphiroa rigida,Amphiroa vanbosseae,Lithophyllum atlanticum,Lithophyllum kaiseri,Lithophyllum margaritae,Titanoderma pustulatum,Titanoderma prototypumandPaulsilvella huveorum, which were previously reported for Brazil, are confirmed in this work. Six new species are distinguished by both molecular and morphological traits, and they are provisionally named asAmphiroasp. 1,Amphiroasp. 2,Amphiroasp. 3,Lithophyllumsp. 1,Lithophyllumsp. 2 andLithophyllumsp. 3. Another 10 species are cryptic and cannot be distinguished based on traditionally used morphological traits. These includeAmphiroasp. 4,Lithophyllumsp. 4, three species that are morphologically named underAmphiroa beauvoisii, and six that share the morphology described forAmphiroa fragilissima. All four markers used were useful for species delimitation. However, a combination of practical aspects and levels of intra- and interspecific divergence values led us to propose the use ofrbcL-3P as a standard DNA barcode marker for the Corallinales.


2020 ◽  
Vol 70 (6) ◽  
pp. 3939-3952
Author(s):  
Harpreet Kaur ◽  
Shashi ◽  
Alan Warren ◽  
Ram Krishan Negi ◽  
Komal Kamra

The spirotrichean ciliate Stylonychia notophora has previously been recorded in India although the descriptions are lacking in detail. It has been suggested several times that the Indian population, S. notophora sensu Sapra and Dass, 1970 collected along the Delhi stretch of the River Yamuna, is identical to Tetmemena pustulata, but this has never been confirmed due to insufficient data for the former. The present study includes detailed descriptions (classical and molecular) of populations of Tetmemena isolated from six locations along the River Yamuna, India. These include four from the Delhi stretch including that from which Sapra and Dass, 1970 isolated their population of S. notophora. Due to the lack of a sufficiently detailed description, the taxonomic status of S. notophora sensu Sapra and Dass, 1970 was not clear. Comparisons among the populations isolated in the present study with previous descriptions of T. pustulata and S. notophora sensu Sapra and Dass, 1970 show only minor differences in morphometry, morphogenesis and in 18S rDNA sequences. The 18S rDNA sequences of all six populations had 99% similarity to both T. pustulata and S. notophora. These findings support the contention that S. notophora sensu Sapra and Dass, 1970 was misidentified and is a population of T. pustulata. This study supports the need for adopting an integrative approach based on morphological, morphogenetic and molecular data in order to understand species delimitation in ciliated protists.


2020 ◽  
Vol 4 (1) ◽  
pp. 8-16
Author(s):  
Dian Rezki Muliani ◽  
Fredinan Yulianda ◽  
Nurlisa A Butet

Oysters belong to the Crassostrea, which is a type of shellfish that lives as benthos in waters under the same substrate and environmental conditions will exhibit similar morphological changes in response. There are many types of oysters that have a similar shape are often an obstacle to differentiate of Crassostrea species through morphological identification. The purpose of this research was to identify the types of oysters found in the waters of Delta Cimanuk through analysis of the morphology and nucleotide diversity of Cytochrome Oxidase subunit I (COI) gene, as basic information on proper management and conservation. The morphological identification results show that there were two species of the Crassostrea. Identification of species through the Barcoding DNA technique shows that there is one type of oyster: Crassostrea iredalei with an accuracy of 99.5%.


2019 ◽  
Vol 51 (4) ◽  
pp. 323-392 ◽  
Author(s):  
Sonja KISTENICH ◽  
Mika BENDIKSBY ◽  
Stefan EKMAN ◽  
Marcela E. S. CÁCERES ◽  
Jesús E. HERNÁNDEZ M. ◽  
...  

AbstractSpecies identification in the tropical lichen genusPhyllopsorais generally challenging and is based on ascospore morphology, vegetative dispersal units, thallus structure and secondary chemistry. As several type specimens are in poor condition and difficult to interpret, it is often unclear how these old names fit with the currently used taxonomy. In the present study, we aim to identify species boundaries inPhyllopsoras. str. supported by an integrative approach using multiple sources of evidence. We investigated a substantial amount of herbarium as well as freshly collected material and generated mtSSU and ITS sequence data from most of the described species, including several types. Species delimitation analyses are applied on the gene trees using mPTP and we construct a species tree of both markers with *BEAST, facilitating discussion of species delimitation and sister-relationships. Comparing morphology, chemistry and molecular data, we found that the mPTP analyses split established species repeatedly. Based on our integrative results, we exclude nine species from the genus, resurrect one (P. melanoglaucaZahlbr.), reduce two into synonymy with otherPhyllopsoraspecies and describe five as new to science:Phyllopsora amazonicaKistenich & Timdal (which shares the secondary chemistry (atranorin and terpenoid pattern) withP. haleichemotype 1, but differs, e.g., in having smaller areolae that are attached to a thinner, white prothallus, and in having more persistently marginate and less convex apothecia),Phyllopsora concinnaKistenich & Timdal (which shares the secondary chemistry (atranorin and parvifoliellin) withP. parvifoliellaandP. rappiana, but differs from both in forming larger isidia, having a white prothallus, apothecial margin paler than the disc, and longer and broader ascospores),Phyllopsora furfurellaKistenich & Timdal (which is here segregated fromP. furfuraceabased on having a white prothallus and in containing skyrin in the hypothecium (K+ red)),Phyllopsora isidosaKistenich & Timdal (which differs fromP. byssisedain forming a more crustose thallus with more delicate isidia, and fromP. isidiotylain forming somewhat coarser, less branched isidia) andPhyllopsora neotinicaKistenich & Timdal (a neotropical species here segregated from the now exclusively paleotropicalP. chodatinica, differing in containing an unknown xanthone (not chodatin)). Lectotypes are designated forBiatora pyrrhomelaenaTuck.,Lecidea leucophyllinaNyl.,L. pertextaNyl., andP. brachysporaMüll. Arg. In total, we accept 54 species in the genusPhyllopsora.


2020 ◽  
Vol 190 (2) ◽  
pp. 532-557 ◽  
Author(s):  
Paul Zaharias ◽  
Yuri I Kantor ◽  
Alexander E Fedosov ◽  
Francesco Criscione ◽  
Anders Hallan ◽  
...  

Abstract The practice of species delimitation using molecular data commonly leads to the revealing of species complexes and an increase in the number of delimited species. In a few instances, however, DNA-based taxonomy has led to lumping together of previously described species. Here, we delimit species in the genus Cryptogemma (Gastropoda: Conoidea: Turridae), a group of deep-sea snails with a wide geographical distribution, primarily by using the mitochondrial COI gene. Three approaches of species delimitation (ABGD, mPTP and GMYC) were applied to define species partitions. All approaches resulted in eight species. According to previous taxonomic studies and shell morphology, 23 available names potentially apply to the eight Cryptogemma species that were recognized herein. Shell morphometrics, radular characters and geographical and bathymetric distributions were used to link type specimens to these delimited species. In all, 23 of these available names are here attributed to seven species, resulting in 16 synonymizations, and one species is described as new: Cryptogemma powelli sp. nov. We discuss the possible reasons underlying the apparent overdescription of species within Cryptogemma, which is shown here to constitute a rare case of DNA-based species lumping in the hyper-diversified superfamily Conoidea.


Zootaxa ◽  
2018 ◽  
Vol 4471 (3) ◽  
pp. 569 ◽  
Author(s):  
WOJCIECH GIŁKA ◽  
LAURI PAASIVIRTA ◽  
PIOTR GADAWSKI ◽  
MICHAŁ GRABOWSKI

Tanytarsus latens sp. nov. is described from Finland (Ostrobothnia borealis, Satakunta). Both morphological and             molecular analyses indicate that T. latens belongs to the mendax species group. The adult male hypopygium of the new species resembles that of Tanytarsus occultus Brundin and of T. desertor Giłka et Paasivirta, while the molecular analysis based on the mitochondrial cytochrome oxidase (COI) gene fragment evidences that T. latens is a sister species to most of European Tanytarsus of the mendax group’s core, for which the COI barcodes are known. Notes on biology of T. latens are also provided. 


ENTOMON ◽  
2019 ◽  
Vol 44 (2) ◽  
pp. 155-160
Author(s):  
Keerthy Vijayan ◽  
R. Sugantha Sakthivel ◽  
T.V. Sajeev

The presence of the body colour polymorphism in the tropical invasive pest giant African snail is reported for the first time from South India. Three different body colour polymorphs were recognised viz. grey, black and white. The grey body colour is the most common polymorph. The black and white colour polymorphs are found to be in almost equal proportions in the reported localities with the grey counterparts. The cytochrome oxidase subunit I (COI) sequences of the three colour polymorphs are found to be identical. The presence of the body colour polymorphism in south India may be attributed to the avian predation and other selection pressures.


Sign in / Sign up

Export Citation Format

Share Document