scholarly journals Analysis of the Differentially Expressed Genes and microRNAs and Prediction of miRNA-mRNA negative Regulatory Network in Nasopharyngeal Carcinoma

2021 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Ping Ouyang ◽  
Wenyan Wu ◽  
Rang Li ◽  
Xuefeng Zhou ◽  
Tao Li
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Lemeng Zhang ◽  
Jianhua Chen ◽  
Tianli Cheng ◽  
Hua Yang ◽  
Changqie Pan ◽  
...  

To identify candidate key genes and miRNAs associated with esophageal squamous cell carcinoma (ESCC) development and prognosis, the gene expression profiles and miRNA microarray data including GSE20347, GSE38129, GSE23400, and GSE55856 were downloaded from the Gene Expression Omnibus (GEO) database. Clinical and survival data were retrieved from The Cancer Genome Atlas (TCGA). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed genes (DEGs) was analyzed via DAVID, while the DEG-associated protein-protein interaction network (PPI) was constructed using the STRING database. Additionally, the miRNA target gene regulatory network and miRNA coregulatory network were constructed, using the Cytoscape software. Survival analysis and prognostic model construction were performed via the survival (version 2.42-6) and rbsurv R packages, respectively. The results showed a total of 2575, 2111, and 1205 DEGs, and 226 differentially expressed miRNAs (DEMs) were identified. Pathway enrichment analyses revealed that DEGs were mainly enriched in 36 pathways, such as the proteasome, p53, and beta-alanine metabolism pathways. Furthermore, 448 nodes and 1144 interactions were identified in the PPI network, with MYC having the highest random walk score. In addition, 7 DEMs in the microarray data, including miR-196a, miR-21, miR-205, miR-194, miR-103, miR-223, and miR-375, were found in the regulatory network. Moreover, several reported disease-related miRNAs, including miR-198a, miR-103, miR-223, miR-21, miR-194, and miR-375, were found to have common target genes with other DEMs. Survival analysis revealed that 85 DEMs were related to prognosis, among which hsa-miR-1248, hsa-miR-1291, hsa-miR-421, and hsa-miR-7-5p were used for a prognostic survival model. Taken together, this study revealed the important roles of DEGs and DEMs in ESCC development, as well as DEMs in the prognosis of ESCC. This will provide potential therapeutic targets and prognostic predictors for ESCC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Xing ◽  
Xitong Zhao ◽  
Hong Ao ◽  
Shaokang Chen ◽  
Ting Yang ◽  
...  

AbstractFat deposition is very important in pig production, and its mechanism is not clearly understood. MicroRNAs (miRNAs) play critical roles in fat deposition and energy metabolism. In the current study, we investigated the mRNA and miRNA transcriptome in the livers of Landrace pigs with extreme backfat thickness to explore miRNA-mRNA regulatory networks related to lipid deposition and metabolism. A comparative analysis of liver mRNA and miRNA transcriptomes from pigs (four pigs per group) with extreme backfat thickness was performed. We identified differentially expressed genes from RNA-seq data using a Cufflinks pipeline. Seventy-one differentially expressed genes (DEGs), including twenty-eight well annotated on the porcine reference genome genes, were found. The upregulation genes in pigs with higher backfat thickness were mainly involved in fatty acid synthesis, and included fatty acid synthase (FASN), glucokinase (GCK), phosphoglycerate dehydrogenase (PHGDH), and apolipoprotein A4 (APOA4). Cytochrome P450, family 2, subfamily J, polypeptide 34 (CYP2J34) was lower expressed in pigs with high backfat thickness, and is involved in the oxidation of arachidonic acid. Moreover, 13 differentially expressed miRNAs were identified. Seven miRNAs were associated with fatty acid synthesis, lipid metabolism, and adipogenic differentiation. Based on comprehensive analysis of the transcriptome of both mRNAs and miRNAs, an important regulatory network, in which six DEGs could be regulated by differentially expressed miRNAs, was established for fat deposition. The negative correlate in the regulatory network including, miR-545-5p and GRAMD3, miR-338 and FASN, and miR-127, miR-146b, miR-34c, miR-144 and THBS1 indicate that direct suppressive regulation may be involved in lipid deposition and energy metabolism. Based on liver mRNA and miRNA transcriptomes from pigs with extreme backfat thickness, we identified 28 differentially expressed genes and 13 differentially expressed miRNAs, and established an important miRNA-mRNA regulatory network. This study provides new insights into the molecular mechanisms that determine fat deposition in pigs.


2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

Gestational diabetes mellitus (GDM) is a metabolic disorder during pregnancy. Numerous biomarkers have been identified that are linked with the occurrence and development of GDM. The aim of this investigation was to identify differentially expressed genes (DEGs) in GDM using a bioinformatics approach to elucidate their molecular pathogenesis. GDM associated expression profiling by high throughput sequencing dataset (GSE154377) was obtained from Gene Expression Omnibus (GEO) database including 28 normal pregnancy samples and 33 GDM samples. DEGs were identified using DESeq2. The gene ontology (GO) and REACTOME pathway enrichments of DEGs were performed by g:Profiler. Protein-protein interaction (PPI) networks were assembled with Cytoscape software and separated into modules using the PEWCC1 algorithm. MiRNA-hub gene regulatory network and TF-hub gene regulatory network were performed with the miRNet database and NetworkAnalyst database. Receiver Operating Characteristic (ROC) analyses was conducted to validate the hub genes. A total of 953 DEGs were identified, of which 478 DEGs were up regulated and 475 DEGs were down regulated. Furthermore, GO and REACTOME pathway enrichment analysis demonstrated that these DEGs were mainly enriched in multicellular organismal process, cell activation, formation of the cornified envelope and hemostasis. TRIM54, ELAVL2, PTN, KIT, BMPR1B, APP, SRC, ITGA4, RPA1 and ACTB were identified as key genes in the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network. TRIM54, ELAVL2, PTN, KIT, BMPR1B, APP, SRC, ITGA4, RPA1 and ACTB in GDM were validated using ROC analysis. This investigation provides further insights into the molecular pathogenesis of GDM, which might facilitate the diagnosis and treatment of GDM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enshuang Zhao ◽  
Hao Zhang ◽  
Xueqing Li ◽  
Tianheng Zhao ◽  
Hengyi Zhao

Studies have shown that fungi cause plant diseases through cross-species RNA interference mechanism (RNAi) and secreted protein infection mechanism. The small RNAs (sRNAs) of Magnaporthe oryzae use the RNAi mechanism of rice to realize the infection process, and different effector proteins can increase the autotoxicity by inhibiting pathogen-associated molecular patterns triggered immunity (PTI) to achieve the purpose of infection. However, the coordination of sRNAs and proteins in the process of M. oryzae infecting rice is still poorly understood. Therefore, the combination of transcriptomics and proteomics to study the mechanism of M. oryzae infecting rice has important theoretical significance and practical value for controlling rice diseases and improving rice yields. In this paper, we used the high-throughput data of various omics before and after the M. oryzae infecting rice to screen differentially expressed genes and sRNAs and predict protein interaction pairs based on the interolog and the domain-domain methods. We were then used to construct a prediction model of the M. oryzae-rice interaction proteins according to the obtained proteins in the proteomic network. Finally, for the differentially expressed genes, differentially expressed sRNAs, the corresponding mRNAs of rice and M. oryzae, and the interacting protein molecules, the M. oryzae-rice sRNA regulatory network was built and analyzed, the core nodes were selected. The functional enrichment analysis was conducted to explore the potential effect pathways and the critical infection factors of M. oryzae sRNAs and proteins were mined and analyzed. The results showed that 22 sRNAs of M. oryzae, 77 secretory proteins of M. oryzae were used as effect factors to participate in the infection process of M. oryzae. And many significantly enriched GO modules were discovered, which were related to the infection mechanism of M. oryzae.


Sign in / Sign up

Export Citation Format

Share Document