scholarly journals Effect of Nano Silica on the Mechanical Properties of Styrene-Butadiene Rubber (SBR) Composite

Author(s):  
Jaleel Kareem Ahmed
Author(s):  
Nguyen Thanh Liem ◽  
Nguyen Huy Tung ◽  
Nguyen Pham Duy Linh ◽  
Banh Trong Phuc ◽  
Nguyen Thi Thuy ◽  
...  

This paper investigates the mechanical and thermal properties of styrene butadiene rubber (SBR) using dicumyl peroxide as curing agent. The results showed that the tear strength of SBR with 2 phr DCP as curing agent increased sharply from 31,7 N/mm to 73,2 N/mm compared to SBR cured with sulfur. The other mechanical properties like tensile strength, elongation at break are unchanged. The accelerators DM/TMTD used by curing of SBR have not only influence on mechanical properties but also on the curing time. Using 0.5-phr trimethylolpropane trimethacrylate (EM 331) also increases the thermal stability of SBR, thermal aging ratio reaches 0.79 from 0.66 comparing with sample without EM 331. Nano silica have good effec for  thermal conductivity coefficient of SBR . At the nano silica content of 3% the thermal conductivity coefficient increases by more than 20.68%, from 0.672 W / m * K of SBR to 0.811 W / m * K of SBR/nano silica composite. This will probably have a good effect on properties of finished product when blending SBR rubber with other types of synthetic rubber which have different vulcanizing properties.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


Author(s):  
Koushik Pal ◽  
Soumya Ghosh Chowdhury ◽  
Dipankar Mondal ◽  
Dipankar Chattopadhyay ◽  
Sanjay Kumar Bhattacharyya ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 185-197
Author(s):  
Daniel Hatungimana ◽  
Şemsi Yazici ◽  
Şevket Orhan ◽  
Ali Mardani-Aghabaglou

ABSTRACT Portland cement is extensively used as a binder in concrete production. However, with Portland cement production, 5% of the natural resources used in this production are consumed, constituting 5–7% of the total CO2 emission. In order to mitigate the environmental problems associated with cement production, styrene-butadiene rubber latex was used as cement replacement up to 20%. In this study, compressive strength, flexural strength, unit weight, water absorption, open porosity, water sorptivity and the chloride ion permeability of Portland cement mortar mixtures modified by styrene-butadiene rubber (SBR) polymeric latex were investigated. For this purpose, the sand/cement ratio and the water/cement ratio were kept constant as 3/1 and 0.5, respectively. In addition to the control mixture containing no polymer, 1, 2, 3, 5, 10 and 20 wt.% of cement was replaced with SBR. In this way, seven mortar mixtures were prepared. Mixed curing (wet cure and dry cure) method was applied to the mortar specimens. Results showed that up to a 5% replacement level, it is possible to improve the mechanical properties of cement mortars with SBR latex addition. However, at a 10% and 20% replacement level, SBR had a significant detrimental effect on the mechanical properties of polymer modified mortars. However, the transport properties decreased with the incorporation rate of SBR latex and the detrimental effect of SBR replacement was more pronounced in 20% SBR mortar mixtures.


Sign in / Sign up

Export Citation Format

Share Document