Competition Between Heparin and Polyethylene Glycol as Biofunctionalization for Improving Stability of Liposomal Doxorubicin

2020 ◽  
Vol 12 (2) ◽  
pp. 271-277
Author(s):  
Eman R. Abbase ◽  
Medhat W. Shafaa ◽  
Mohsen M. Mady

In order to improve liposomal doxorubicin stability, differentiation between Heparin and Polyethylene Glycol (PEG) as biofunctionalization for liposomal doxorubicin has been investigated by measuring the entrapment efficiency, size distribution, zeta potential, evaluating the in vitro potential cytotoxicity against MCF-7 (Breast cancer cell) and stability in serum by measuring the drug release rate. We synthesized Four liposomal formulations: (A) Conventional liposomes; DPPC:DOX, (B) Positively charged PEGylated liposomes; DPPC:CHOL:SA:PEG:DOX (C) Negatively charged PEGylated liposomes: DPPC:CHOl:DCP:PEG:DOX (D) positively charged liposomes to conjugate heparin; DPPC:CHOL:SA:DOX. Entrapment efficiency of doxorubicin dramatically increased after PEGylation and conjugation with heparin. In addition, zeta potential was changed upon the encapsulation of doxorubicin into conventional and PEGylated liposomes which indicates that DOX encapsulated completely into liposomes. For heparin conjugated liposomes, zeta potential was slightly changed. Sulphorhodamine-B (SRB) assay showed a greater cytotoxic effect of the liposomal doxorubicin formulations at different concentrations with respect to free drug against MCF-7 cell lines. The anticancer activity order was observed between the various liposome formulations, especially those observed with conjugated heparin liposomes. Slower drug release rate showed an order of D > C > B > A that means stability showed an order of D > C > B > A. From above results, the most stable liposomal doxorubicin formulation was the liposomal formulation D. The results optimized using heparin than PEG as biofunctionalization. Further studies are suggested for better understanding why heparin improves the stability of liposomal doxorubicin.

2021 ◽  
Vol 21 (7) ◽  
pp. 3735-3741
Author(s):  
Heeseok Jeong ◽  
Hyunju Lim ◽  
Deuk Yong Lee ◽  
Yo-Seung Song ◽  
Bae-Yeon Kim

Nifedipine (NF)-loaded poly(lactic acid) (PLA) and PLA/polyethylene glycol (PLA/PEG) microcapsules are synthesized using a high-speed agitator and a syringe pump with an oil-in-water emulsion-solvent evaporation technique to evaluate the effect of PLA/PEG ratio on morphology and drug release behavior of the capsules. Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimeter (DSC), and X-ray diffraction (XRD) results indicate that PEG reacts successfully with PLA due to the ether bond between PEG and PLA. The drug release rate of PLA and PLA/PEG capsules increases dramatically from 0 to 5 min and then reaches a plateau within 15 to 20 min. Due to the high specific surface area, the amount of NF released is raised by reducing the PLA concentration from 5 wt% to 2 wt%. Unlike PLA capsules, the drug release rate of PLA/PEG capsules increases due to the size effect by varying the PLA/PEG ratio from 10/0 to 6/4. Larger PLA/PEG capsules are attributed to higher amounts of encapsulated NF. The capsules show no evidence of cytotoxicity, suggesting that the PLA and PLA/PEG drug carriers are clinically safe.


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25164-25170 ◽  
Author(s):  
Bo Zhang ◽  
Teng Zhang ◽  
Quanxi Wang ◽  
Tianrui Ren

A controlled release system was prepared, it based on UF modified PCC cells in which TEB are loaded into cells. It can control the drug release rate, depress the initial “burst effect”, and was efficacious in controlling wheat powdery mildew.


Biomaterials ◽  
2001 ◽  
Vol 22 (21) ◽  
pp. 2857-2865 ◽  
Author(s):  
Giacomo Fontana ◽  
Mariano Licciardi ◽  
Silvana Mansueto ◽  
Domenico Schillaci ◽  
Gaetano Giammona

Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


Author(s):  
RADITYA ISWANDANA ◽  
RICHA NURSELVIANA ◽  
SUTRIYO SUTRIYO

Objective: Gold nanoparticles (AuNPs) are highly useful for drug delivery, but their application is limited by their stability as they readily aggregate.This issue can be prevented by adding a stabilizing agent such as resveratrol (RSV), which is a polyphenol derived from plants, that is used to preventcancer. Therefore, we propose a novel method to prepare stable RSV-conjugated nanoparticles modified with polyethylene glycol (RSV-AuNP-PEG).Methods: In the first step, the Turkevich method was used to synthesize the AuNPs. Then, PEG was added as stabilizer agent and conjugated with RSV.The synthesized conjugates were characterized using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, particle sizeanalysis, and high-performance liquid chromatography.Results: The obtained RSV-AuNP-PEG had a particle size of 83.93 nm with a polydispersity index (PDI) of 0.562 and formed a translucent purple-redfluid in solution. The zeta potential was −22.9 mV, and the highest entrapment efficiency was 75.86±0.66%. For comparison, the RSV-AuNP solutionwas purple and turbid, the particle size was 51.97 nm with a PDI of 0.694, and the zeta potential was −24.6 mV. The stability test results showed thatthe storage stability of RSV-AuNP-PEG was better than that of AuNP-RSV. Further, the RSV-AuNP-PEG was shown to be most stable in 2% bovine serumalbumin (BSA) while the AuNP-RSV was most stable in 2% BSA in phosphate-buffered saline pH 7.4.Conclusion: These results show that modification of RSV-conjugated AuNPs with PEG effectively prevents their aggregation in storage, but only incertain mediums.


Author(s):  
M. Yasmin Begum ◽  
Prathyusha Reddy Gudipati

Objective: The aim of present work was to formulate and evaluate Dasatinib (DST) loaded solid lipid nanoparticles (SLNs) as a potential anticancer drug delivery system by enhancing its solubility.Methods: SLNs consist of a solid lipid matrix where the drug was incorporated. Surfactants of GRAS grade were used to avoid aggregation and to stabilize the SLNs. DST-SLNs formulations of varying concentrations were prepared by high speed homogenization technique and evaluated for drug excipients compatibility study, poly-dispersity index, particle size analysis, surface morphology, zeta potential and drug release features.Results: It was observed that DST-SLNs with optimum quantities of poloxomer: lecithin ratio showed 88.06% drug release in 6h with good entrapment efficiency of 76.9±0.84 %. Particle size, Poly dispersity index, zeta potential and drug entrapment efficiency for the optimized formulation was found to be optimum. Stability studies revealed that the entrapment efficiency of the SLN dispersion stored in 4 °C was stable.Conclusion: Thus, it can be concluded that formulations of DST loaded SLNs are suitable carriers for improving the solubility and dissolution related problems. 


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


Sign in / Sign up

Export Citation Format

Share Document