Performance Analysis of Alumina Nanofluids on Flat Plate Solar Collector by Using Computational Fluid Dynamics

2020 ◽  
Vol 12 (6) ◽  
pp. 810-814
Author(s):  
S. T. Jaya Suthahar ◽  
S. Saravanan

It is essential to find more renewable, sustainable ways of generating energy as the global energy demand is expected to grow by 30% by 2040. This work is concerned with the numerical prediction of thermal performance of flat plate solar collector, professor by varying the diameter of riser tube and changing the working fluid. A solar collector for heating a volume of 10 liters of working fluid is designed and investigated. 3D CAD model of the collector consisting of a fluid zone and two solid zones is generated for solving this conjugate heat transfer problem. Numerical analysis is carried out on the solar collector systems and their performance is predicted. The thermal and flow properties obtained for the solar collector systems are compared with each other to identify the best performing model of the solar collector. It is found from the numerical results that 14 mm riser tube with nano fluids gives comparatively best performance in terms of absorbing solar energy.

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Saif Ali Kadhim ◽  
Osama Abd AL-Munaf Ibrahim

Solar energy is one of the most important types of renewable energy and is characterized by its availability, especially in Iraq. It can be used in many applications, including supply thermal energy by solar collectors. Improving the thermal efficiency of solar collector leads to an increase in the thermal energy supplied. Using a nano-fluid instead of base fluid (water is often used) as a working fluid is a method many used to increase the thermal efficiency of solar collectors. In this article, the latest research that used nano-fluid as a working fluid in evaluating the thermal efficiency of solar collector, type flat plate was reviewed. The thermal efficiency improvement of flat plate solar collector was reviewed based on the type of nanoparticles (metal oxides, semiconductors oxides, carbon compounds) used in the base fluid and comparison was made between these nanoparticles under the same conditions. Moreover, the effect of varying the concentration of nanoparticles in the base fluid and changing the working fluid flow rate on the thermal efficiency of flat plate solar collector was also reviewed. The results of the review showed that nano-fluids containing carbon compounds are better than other nano-fluids and that copper oxide is better than the rest of the metal oxides used in improving the thermal efficiency of flat plate solar collectors.


2018 ◽  
Vol 4 (3) ◽  
pp. 25 ◽  
Author(s):  
Daniel Ferrández ◽  
Carlos Moron ◽  
Jorge Pablo Díaz ◽  
Pablo Saiz

ResumenEl actual Código Técnico de la Edificación (CTE) pone de manifiesto la necesidad de cubrir parte de la demanda energética requerida para el abastecimiento de agua caliente sanitaria y climatización de piscinas cubiertas mediante sistemas de aprovechamiento de la energía solar térmica. En este artículo se presenta una comparativa entre las dos principales tipologías de captadores solares térmicos que existen en el mercado: el captador de placa plana y el captador de tubo de vacío, atendiendo a criterios de fracción solar, diseño e integración arquitectónica. Todo ello a fin de discernir en qué circunstancias es más favorable el uso de uno u otro sistema, comparando los resultados obtenidos mediante programas de simulación con la toma de medidas in situ.AbstractThe current Technical Building Code (CTE) highlights the need to cover part of the energy demand required for the supply of hot water and heating of indoor swimming pools using solar thermal systems. This article presents a comparison between the two main types of solar thermal collectors that exist in the market: the flat plate solar collector and the vacuum tube solar collector, according to criteria of solar fraction, design and architectural integration. All of this in order to discern in what circumstances the use of one or the other system is more favourable, comparing the results obtained through simulation programs with the taking of measurements in situ.


Author(s):  
Mohamed Nabeel A. Negm ◽  
Ahmed A. Abdel-Rehim ◽  
Ahmed A. A. Attia

The world is still dependent on fossil fuels as a continuous and stable energy source, but rising concerns for depletion of these fuels and the steady increase in demand for clean “green” energy have led to the rapid growth of the renewable energy field. As one of the most available energy sources with high energy conversion efficiency, solar energy is the most prominent of these energies as it also has the least effect on the environment. Flat plate collectors are the most common solar collectors, while their efficiency is limited by their absorber’s effectiveness in energy absorption and the transfer of this energy to the working fluid. The efficiency of flat plate solar collectors can be increased by using nanofluids as the working fluid. Nanofluids are a relatively recent development which can greatly enhance the thermophysical properties of working fluids. In the present study, the effect of using Al2O3/Water nanofluid as the working fluid on the efficiency of a thermosyphon flat-plate solar collector was experimentally investigated. The results of this experiment show an increase in efficiency when using nanofluids as the working fluid compared to distilled water. It was found that Al2O3/water nanofluids are a viable enhancement for the efficiency of flat-plate solar collectors.


2012 ◽  
Vol 16 (2) ◽  
pp. 583-591
Author(s):  
C.O.C. Oko ◽  
S.N. Nnamchi

Study of rate of heat transfer in a flat-plate solar collector is the main subject of this paper. Measurements of collector and working fluid temperatures were carried out for one year covering the harmattan and rainy seasons in Port Harcourt, Nigeria, which is situated at the latitude of 4.858oN and longitude of 8.372oE. Energy balance equations for heat exchanger were employed to develop a mathematical model which relates the working fluid temperature with the vital collector geometric and physical design parameters. The exit fluid temperature was used to compute the rate of heat transfer to the working fluid and the efficiency of the transfer. The optimum fluid temperatures obtained for the harmattan, rainy and yearly (or combined) seasons were: 317.4, 314.9 and 316.2 [K], respectively. The corresponding insolation utilized were: 83.23, 76.61 and 79.92 [W/m2], respectively, with the corresponding mean collector efficiency of 0.190, 0.205 and 0.197 [-], respectively. The working fluid flowrate, the collector length and the range of time that gave rise to maximum results were: 0.0093 [kg/s], 2.0 [m] and 12PM - 13.00PM, respectively. There was good agreement between the computed and the measured working fluid temperatures. The results obtained are useful for the optimal design of the solar collector and its operations.


Author(s):  
Yussra Malalah Abdula ◽  
Gadeer Salim ◽  
Salman K

Sustainable energy becomes an optimal alternative to overcome environmental pollution economical cost of fossil fuel. One of the most effective means to invest solar radiation is flat plate solar collectors. A study carried out to optimize and assess the performance of flat plate solar collector (FPSC) for domestic and industrial applications in the Iraq climate. A 3D numerical model of FPSC has modeled by ANSYS19, CFD tool has been used to investigate thermal transfer through FPSC based on different working fluid. Water, and nanofluid of water/copper nanomaterials were used as working fluid with three different concentrations levels, 0.011 %, 0.055%, and 0,101 %. The velocity of water was 0.3, and 0.5 m/sec respectively. The result of the numerical model was compared with a literature study to prove the reliability of the current model. The result of the current study indicated that, adding Cu nanoparticular to the working fluid enhanced temperatures outlet of FPSC. Also, maximum temperatures can be achieved by reducing the velocity value.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Yash Kashyap ◽  
Apurva Singh ◽  
Y. Raja Sekhar

In this study, the exergetic performance of a flat plate solar collector (FPSC) setup with ZnO-based ethylene glycol (EG)/water nanofluid as a working fluid has been evaluated against that of EG/water. As a passive means to augment the rate of heat transfer, internally grooved tubes of two different pitches (e = 0.43 and e = 0.44) have been examined and compared against the performance of plain tube. The mass flow rate was fixed at 0.015 kg/s and the volume fraction of ZnO nanoparticles is ф = 0.02% v/v. The results indicate an enhancement in exergy efficiency of 44.61% when using the grooved tube (e = 0.44) against plain tube without the nanofluid and 39.17% when nanofluid is used. Using the nanofluid enhanced the exergy efficiency of the FPSC by a maximum of 73.81%. Maximum exergy efficiency obtained was 5.95% for grooved tube (e = 0.44) with nanofluid as working fluid and is in good agreement with previous literature. Exergy destruction/irreversibility due to temperature differences and heat flow within the system has been reported. Sun-collector temperature difference accounts for nearly 86–94% of the irreversibility. The results for thermal efficiency of this experimental setup have been published and summarized in this study for reference.


2016 ◽  
Vol 831 ◽  
pp. 181-187 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Bartosz Dawidowicz ◽  
Aleksandra Popakul

Solar collectors is one of the technologies absorbing energy from solar beam and utilizing it for heating purposes, displacing the need to burn fossil fuels. There are many ways to improve effectiveness of the solar collectors [1,2]. Recent method to absorb more heat from the solar beam is to modify thermal characteristics of the working fluid. For this purpose one can use nanofluids, i.e. suspensions of metallic or nonmetallic nanoparticles in a base fluid [3].


2019 ◽  
Vol 12 (2) ◽  
pp. 90-97
Author(s):  
Basil Noori Merzah ◽  
Majid H. Majeed ◽  
Fouad A. Saleh

In this work, a system of a heat pipe is implemented to improve the performance of flat plate solar collector. The model is represented by square shape portion of the evaporator section of wicked heat pipe with a constant total length of 510 mm, and the evaporator section inclined by an angle of 30o. In this models the evaporator, adiabatic and condenser lengths are 140mm, 140mm, and 230mm respectively. The omitted energies from sunlight simulator are 200, 400, 600, 800 and 1000 W/m2 which is close to the normal solar energy in Iraq. The working fluid for all models is water with fill charge ratio of 240%. The efficiency of the solar collector is investigated with three values of condenser inlet water temperatures, namely (12, 16 and 20o C). The numerical result showed an optimum volume flow rate of cooling water in condenser at which the efficiency of collector is a maximum. This optimum agree well with the ASHRAE standard volume of flow rate for conventional tasting for flat plate solar collector. When the radiation incident increases the thermal resistance of wicked heat pipe is decreases, where the heat transfer from the evaporator to condenser increases. The numerical results showed the performance of solar collector with square shape evaporator greater than other types of evaporator as a ratio 15 %.


Solar Energy ◽  
2018 ◽  
Vol 167 ◽  
pp. 231-241 ◽  
Author(s):  
Sujit Kumar Verma ◽  
Arun Kumar Tiwari ◽  
Sandeep Tiwari ◽  
Durg Singh Chauhan

Sign in / Sign up

Export Citation Format

Share Document