Finite Element Modeling of Nomex® Honeycomb Core Carbon/Epoxy Composite Sandwich Panels

2012 ◽  
Vol 15 (1) ◽  
pp. 257-261
Author(s):  
Rene Roy ◽  
Khanh-Hung Nguyen ◽  
Jin-Hwe Kweon ◽  
Chang-Won Shul
Author(s):  
Shah Alam ◽  
Guoqiang Li

Abstract This study presents the testing and numerical modeling results of composite sandwich beams. The sandwich beams are constructed from balsa wood in the core and high strength steel wire and E-glass fiber reinforced polymer composite in the facings. The testing of these beams is performed using a monotonic static four-point loading to failure in accordance with ASTM C393-00. Local strain distribution in the mid-span of the beams is obtained using strain gauges. Mid-span deflections of the beams are real-time measured using linear variable displacement transducer (LVDT). From the experimental results, flexural properties of the beams are calculated, including bending stiffness, bending strength, core shear strength, and facing modulus, core modulus, etc. The experimental results have shown that the beams have all failed in the compression zone by local buckling of the top face and shear of the core. The bottom skin does not exhibit any type of premature failure or distress. No bond failure of the composite in the tension zone is observed in any of the tested beams. Finite element modeling of the beam has been conducted using ANSYS. The mechanical properties of the skin and core material used in finite element modeling have been determined by testing of coupons. The predicted results are compared to experimental results, with a reasonable agreement.


2021 ◽  
pp. 102329
Author(s):  
I.R. Upasiri ◽  
K.M.C. Konthesigha ◽  
S.M.A. Nanayakkara ◽  
K. Poologanathan ◽  
P. Gatheeshgar ◽  
...  

2021 ◽  
Vol 2021 (6) ◽  
pp. 5353-5359
Author(s):  
MICHAL SKOVAJSA ◽  
◽  
FRANTISEK SEDLACEK ◽  
MARTIN MRAZEK ◽  
◽  
...  

This paper deal with comparison of mechanical properties of composite sandwich panel with aluminium honeycomb core which is determined by experimental measurement, analytic calculation and numerical simulation. The goal was to compared four composite sandwich panels. The composite sandwich panels were made of two different aluminium honeycomb cores with density 32 and 72 kg.m-3 and two different layup of skin with 4 and 5 layers. The comparison was performed on a three-point bend test with support span 400 mm. This paper confirms the possibility of a very precise design of a composite sandwich panel with an aluminium honeycomb core using analytical calculation and numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document