Reduce Spleen-IFN-γ Correlated with CXCL9 Levels During Cerebral Malaria Phase in Annona muricata-Treated Swiss Mouse Study

2017 ◽  
Vol 23 (4) ◽  
pp. 3380-3384 ◽  
Author(s):  
Kis Djamiatun ◽  
Walid F. A Naamat ◽  
Edi Dharmana ◽  
Noor Wijayahadi ◽  
Djoko Nugroho
2017 ◽  
Vol 85 (11) ◽  
Author(s):  
Ana Villegas-Mendez ◽  
Patrick Strangward ◽  
Tovah N. Shaw ◽  
Ivana Rajkovic ◽  
Vinko Tosevski ◽  
...  

ABSTRACT Experimental cerebral malaria (ECM) is a gamma interferon (IFN-γ)-dependent syndrome. However, whether IFN-γ promotes ECM through direct and synergistic targeting of multiple cell populations or by acting primarily on a specific responsive cell type is currently unknown. Here, using a panel of cell- and compartment-specific IFN-γ receptor 2 (IFN-γR2)-deficient mice, we show that IFN-γ causes ECM by signaling within both the hematopoietic and nonhematopoietic compartments. Mechanistically, hematopoietic and nonhematopoietic compartment-specific IFN-γR signaling exerts additive effects in orchestrating intracerebral inflammation, leading to the development of ECM. Surprisingly, mice with specific deletion of IFN-γR2 expression on myeloid cells, T cells, or neurons were completely susceptible to terminal ECM. Utilizing a reductionist in vitro system, we show that synergistic IFN-γ and tumor necrosis factor (TNF) stimulation promotes strong activation of brain blood vessel endothelial cells. Combined, our data show that within the hematopoietic compartment, IFN-γ causes ECM by acting redundantly or by targeting non-T cell or non-myeloid cell populations. Within the nonhematopoietic compartment, brain endothelial cells, but not neurons, may be the major target of IFN-γ leading to ECM development. Collectively, our data provide information on how IFN-γ mediates the development of cerebral pathology during malaria infection.


2012 ◽  
Vol 189 (2) ◽  
pp. 968-979 ◽  
Author(s):  
Ana Villegas-Mendez ◽  
Rachel Greig ◽  
Tovah N. Shaw ◽  
J. Brian de Souza ◽  
Emily Gwyer Findlay ◽  
...  

2008 ◽  
Vol 38 (4) ◽  
pp. 1082-1095 ◽  
Author(s):  
Philippe E. Van den Steen ◽  
Katrien Deroost ◽  
Ilse Van Aelst ◽  
Nathalie Geurts ◽  
Erik Martens ◽  
...  

2005 ◽  
Vol 73 (9) ◽  
pp. 5645-5653 ◽  
Author(s):  
Andrew J. Mitchell ◽  
Anna M. Hansen ◽  
Leia Hee ◽  
Helen J. Ball ◽  
Sarah M. Potter ◽  
...  

ABSTRACT Cerebral malaria (CM) is an infrequent but serious complication of Plasmodium falciparum infection in humans. Animal and human studies suggest that the pathogenesis of CM is immune mediated, but the precise mechanisms leading to cerebral pathology are unclear. In mice, infection with Plasmodium berghei ANKA results in CM on day 6 postinoculation (p.i.), while infection with the closely related strain P. berghei K173 does not result in CM. Infection with P. berghei K173 was associated with increased plasma gamma interferon (IFN-γ) at 24 h p.i. and with increased splenic and hepatic mRNAs for a range of cytokines (IFN-γ, interleukin-10 [IL-10], and IL-12) as well as the immunoregulatory enzyme indoleamine 2,3-dioxygenase. In contrast, P. berghei ANKA infection was associated with an absence of cytokine production at 24 h p.i. but a surge of IFN-γ production at 3 to 4 days p.i. When mice were coinfected with both ANKA and K173, they produced an early cytokine response, including a burst of IFN-γ at 24 h p.i., in a manner similar to animals infected with P. berghei K173 alone. These coinfected mice failed to develop CM. In addition, in a low-dose P. berghei K173 infection model, protection from CM was associated with early production of IFN-γ. Early IFN-γ production was present in NK-cell-depleted, γδ-cell-depleted, and Jα281−/− (NKT-cell-deficient) mice but absent from β2-microglobulin mice that had been infected with P. berghei K173. Taken together, the results suggest that the absence of a regulatory pathway involving IFN-γ and CD8+ T cells in P. berghei ANKA infection allows the development of cerebral immunopathology.


2019 ◽  
Vol 116 (20) ◽  
pp. 9979-9988 ◽  
Author(s):  
Julie C. Ribot ◽  
Rita Neres ◽  
Vanessa Zuzarte-Luís ◽  
Anita Q. Gomes ◽  
Liliana Mancio-Silva ◽  
...  

Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.


2015 ◽  
Vol 83 (4) ◽  
pp. 1406-1417 ◽  
Author(s):  
Jintao Guo ◽  
James A. McQuillan ◽  
Belinda Yau ◽  
Gregory S. Tullo ◽  
Carole A. Long ◽  
...  

Gamma interferon (IFN-γ) drives antiparasite responses and immunopathology during infection withPlasmodiumspecies. Immunity-related GTPases (IRGs) are a class of IFN-γ-dependent proteins that are essential for cell autonomous immunity to numerous intracellular pathogens. However, it is currently unknown whether IRGs modulate responses during malaria. We have used thePlasmodium bergheiANKA (PbA) model in which mice develop experimental cerebral malaria (ECM) to study the roles of IRGM1 and IRGM3 in immunopathology. Induction of mRNA forIrgm1andIrgm3was found in the brains and spleens of infected mice at times of peak IFN-γ production.Irgm3−/−but notIrgm1−/−mice were completely protected from the development of ECM, and this protection was associated with the decreased induction of inflammatory cytokines, as well as decreased recruitment and activation of CD8+T cells within the brain. Although antigen-specific proliferation of transferred CD8+T cells was not diminished compared to that of wild-type recipients following PbA infection, T cells transferred intoIrgm3−/−recipients showed a striking impairment of effector differentiation. Decreased induction of several inflammatory cytokines and chemokines (interleukin-6, CCL2, CCL3, and CCL4), as well as enhanced mRNA expression of type-I IFNs, was found in the spleens ofIrgm3−/−mice at day 4 postinfection. Together, these data suggest that protection from ECM pathology inIrgm3−/−mice occurs due to impaired generation of CD8+effector function. This defect is nonintrinsic to CD8+T cells. Instead, diminished T cell responses most likely result from defective initiation of inflammatory responses in myeloid cells.


2008 ◽  
Vol 30 (10) ◽  
pp. 544-553 ◽  
Author(s):  
E. BELNOUE ◽  
S. M. POTTER ◽  
D. S. ROSA ◽  
M. MAUDUIT ◽  
A. C. GRÜNER ◽  
...  

2017 ◽  
Vol 23 (4) ◽  
pp. 3372-3375
Author(s):  
Kis Djamiatun ◽  
Husen Mohamed Albakoush ◽  
Tri Nur Kristina ◽  
Djoko Nugroho

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61882 ◽  
Author(s):  
Nathaniel Shryock ◽  
Cortez McBerry ◽  
Rosa Maria Salazar Gonzalez ◽  
Steven Janes ◽  
Fabio T. M. Costa ◽  
...  

2019 ◽  
Vol 5 (2) ◽  
pp. 47-52
Author(s):  
Abdulhakim Sulayman ◽  
Kis - Djamiatun ◽  
Muflihatul Muniroh

ABSTRACTBackground: Malaria, caused by Plasmodium sp infection, is a major global cause of morbidity and mortality. Most experimental cerebral malaria (ECM) studies show increase number of Th1 cells and CTLs in the brain, due to increase chemokine expression, including CXCL10, a potent chemokine involved in cerebral malaria (CM). Recent studies show that CXCL10 provokes apoptosis of human brain micro-endothelial cells and in vitro neuroglia cells.Objective: To determine whether combination of Annona muricata-leaf-extracted-by-water (AME) and artemisinin-combination-therapy (ACT) reduce brain-CXCL10-expression of Swiss-mice inoculated with P. berghei ANKA (PbA). Methods: This was an experimental-study with post-test-only-control-group-design. Twenty-four Swiss-mice (PbA-inoculated) were randomly divided into 4 groups. Control group (C) was PbA inoculated only. X1, X2 and X3 groups received AME, ACT and combination of AME and ACT treatment, respectively.  CXCL10 was stained with in immunohistochemistry, which then observed by light microscope in order to determine Allred-score. Kruskal-Wallis test was used to statistically analyze the differences among groups, then followed by a Mann- Whitney U test.Result: C and X1groups had severe-PbA-infection when the study was end on day-7-PbA-infection, while X2 and X3 groups entered recovery-stage. The AME-ACT-treatment-group had significantly lower of brain-CXCL10-expression than AME-group (p=0.008) and nearly significantly lower than control-group (p=0.058). Group that received ACT alone had no different value of brain-CXCL10-expression than control-group (p=0.502) and combination AME–ACT group (p=0.335).Conclusion: The combination of AME–ACT treatment decreases brain-CXCL10-expression of Swiss-mice during PbA-infection-recovery-stage, indicating the effectivity of AME–ACT combined therapy is better prevention of cerebral malaria than AME alone.


Sign in / Sign up

Export Citation Format

Share Document