A Performance Comparison Based on Machine Learning Approaches to Distinguish Parkinson’s Disease from Alzheimer Disease Using Spatiotemporal Gait signals

2018 ◽  
Vol 24 (3) ◽  
pp. 2058-2062 ◽  
Author(s):  
Satyabrata Aich ◽  
Ki-Won Choi ◽  
Pyari Mohan Pradhan ◽  
Jinse Park ◽  
Hee-Cheol Kim
2018 ◽  
Vol 46 (12) ◽  
pp. 2057-2068 ◽  
Author(s):  
Erika Rovini ◽  
Carlo Maremmani ◽  
Alessandra Moschetti ◽  
Dario Esposito ◽  
Filippo Cavallo

2020 ◽  
Vol 10 (5) ◽  
pp. 1827 ◽  
Author(s):  
Rodrigo Olivares ◽  
Roberto Munoz ◽  
Ricardo Soto ◽  
Broderick Crawford ◽  
Diego Cárdenas ◽  
...  

During the last years, highly-recognized computational intelligence techniques have been proposed to treat classification problems. These automatic learning approaches lead to the most recent researches because they exhibit outstanding results. Nevertheless, to achieve this performance, artificial learning methods firstly require fine tuning of their parameters and then they need to work with the best-generated model. This process usually needs an expert user for supervising the algorithm’s performance. In this paper, we propose an optimized Extreme Learning Machine by using the Bat Algorithm, which boosts the training phase of the machine learning method to increase the accuracy, and decreasing or keeping the loss in the learning phase. To evaluate our proposal, we use the Parkinson’s Disease audio dataset taken from UCI Machine Learning Repository. Parkinson’s disease is a neurodegenerative disorder that affects over 10 million people. Although its diagnosis is through motor symptoms, it is possible to evidence the disorder through variations in the speech using machine learning techniques. Results suggest that using the bio-inspired optimization algorithm for adjusting the parameters of the Extreme Learning Machine is a real alternative for improving its performance. During the validation phase, the classification process for Parkinson’s Disease achieves a maximum accuracy of 96.74% and a minimum loss of 3.27%.


2021 ◽  
Vol 309 ◽  
pp. 01008
Author(s):  
P. Mounika ◽  
S. Govinda Rao

Parkinson’s disease (PD) is a sophisticated anxiety malady that impairs movement. Symptoms emerge gradually, initiating with a slight tremor in only one hand occasionally. Tremors are prevalent, although the condition is sometimes associated with stiffness or slowed mobility. In the early degrees of PD, your face can also additionally display very little expression. Your fingers won’t swing while you walk. Your speech can also additionally grow to be gentle or slurred. PD signs and symptoms get worse as your circumstance progresses over time. The goal of this study is to test the efficiency of deep learning and machine learning approaches in order to identify the most accurate strategy for sensing Parkinson’s disease at an early stage. In order to measure the average performance most accurately, we compared deep learning and machine learning methods.


2021 ◽  
Vol 28 ◽  
Author(s):  
Annamaria Landolfi ◽  
Carlo Ricciardi ◽  
Leandro Donisi ◽  
Giuseppe Cesarelli ◽  
Jacopo Troisi ◽  
...  

Background:: Parkinson’s disease is the second most frequent neurodegenerative disorder. Its diagnosis is challenging and mainly relies on clinical aspects. At present, no biomarker is available to obtain a diagnosis of certainty in vivo. Objective:: The present review aims at describing machine learning algorithms as they have been variably applied to different aspects of Parkinson’s disease diagnosis and characterization. Methods:: A systematic search was conducted on PubMed in December 2019, resulting in 230 publications obtained with the following search query: “Machine Learning” “AND” “Parkinson Disease”. Results:: the obtained publications were divided into 6 categories, based on different application fields: “Gait Analysis - Motor Evaluation”, “Upper Limb Motor and Tremor Evaluation”, “Handwriting and typing evaluation”, “Speech and Phonation evaluation”, “Neuroimaging and Nuclear Medicine evaluation”, “Metabolomics application”, after excluding the papers of general topic. As a result, a total of 166 articles were analyzed, after elimination of papers written in languages other than English or not directly related to the selected topics. Conclusion:: Machine learning algorithms are computer-based statistical approaches which can be trained and are able to find common patterns from big amounts of data. The machine learning approaches can help clinicians in classifying patients according to several variables at the same time.


Sign in / Sign up

Export Citation Format

Share Document