Study on the Mechanism of Paeoniflorin Against Atherosclerosis Through Network Pharmacology and Molecular Docking

2020 ◽  
Vol 14 (4) ◽  
pp. 467-475
Author(s):  
Chengguo Zhao ◽  
Wenpei Ling ◽  
Chunyu Luo ◽  
Meifang Yin ◽  
Shuzhi Qin

This study explored the mechanism of paeoniflorin (PF) against atherosclerosis (AS) at the molecular level using network pharmacology and molecular docking. The targets of PF and disease targets related to AS were obtained through literature mining and database search, the PPI network diagram was drawn, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and the PF structure was docked with core target. In the results, 130 common target proteins of PF and AS were obtained. GO enrichment analysis found 1071 items related to biological processes, mainly related to metabolism, protein modification, regulation of cell activity, regulation of macromolecule synthesis, etc. There were 107 items related to molecular functions, mainly related to cyclic compounds, ions, nucleotides, and ribose Combine etc. KEGG analysis revealed 79 pathways, mainly Pathways in cancer, PI3K-Akt signalling pathway, Proteoglycans in cancer, Ras signalling pathway, FoxO signalling pathway, etc. The molecular docking results showed that PF had good binding activity with the screened target. In conclusion, this study indicated that PF treatment of AS involves multiple direct or indirect targets and signal pathways, providing a reference for further research on the mechanism of PF treatment of AS.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Mengshi Tang ◽  
Xi Xie ◽  
Pengji Yi ◽  
Jin Kang ◽  
Jiafen Liao ◽  
...  

Objective. To explore the main components and unravel the potential mechanism of simiao pill (SM) on rheumatoid arthritis (RA) based on network pharmacological analysis and molecular docking. Methods. Related compounds were obtained from TCMSP and BATMAN-TCM database. Oral bioavailability and drug-likeness were then screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Additionally, target genes related to RA were acquired from GeneCards and OMIM database. Correlations about SM-RA, compounds-targets, and pathways-targets-compounds were visualized through Cytoscape 3.7.1. The protein-protein interaction (PPI) network was constructed by STRING. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed via R packages. Molecular docking analysis was constructed by the Molecular Operating Environment (MOE). Results. A total of 72 potential compounds and 77 associated targets of SM were identified. The compounds-targets network analysis indicated that the 6 compounds, including quercetin, kaempferol, baicalein, wogonin, beta-sitosterol, and eugenol, were linked to ≥10 target genes, and the 10 target genes (PTGS1, ESR1, AR, PGR, CHRM3, PPARG, CHRM2, BCL2, CASP3, and RELA) were core target genes in the network. Enrichment analysis indicated that PI3K-Akt, TNF, and IL-17 signaling pathway may be a critical signaling pathway in the network pharmacology. Molecular docking showed that quercetin, kaempferol, baicalein, and wogonin have good binding activity with IL6, VEGFA, EGFR, and NFKBIA targets. Conclusion. The integrative investigation based on bioinformatics/network topology strategy may elaborate on the multicomponent synergy mechanisms of SM against RA and provide the way out to develop new combination medicines for RA.


2021 ◽  
Author(s):  
Jie-wen Zhao ◽  
Hai-dong Liu ◽  
Ming-yin Man ◽  
Lv-ya Wang ◽  
Ning Li ◽  
...  

Abstract Background Qishen Yiqi Pills (QSYQP) is a traditional Chinese compound recipe. However, our understanding of its mechanism has been hindered due to the complexity of its components and targets. In this work, the network pharmacology-based approaches were used to explore QSYQP’s pharmacological mechanism on treating cardiovascular diseases (CVD). Results From ETCM and TCM MESH databases we collected QSYQP’s 333 active components and their 674 putative targets. We constructed the sub-network influence by CVD genes and found that 40% QSYQP targets appeared in 20 modules, in which QSYQP’s targets and CVD genes co-existed as hub nodes in the sub-network. Functional enrichment analysis suggested that the 42 key targets were mainly expressed in platelets, blood vessels, cardiomyocytes, and other tissues. The main signaling pathways regulated and controlled by the key targets were inflammation, immunity, blood coagulation and energy metabolism. Network and pathway analysis identified 7 key targets, which were regulated by 7 compounds of QSYQP. 26 of the 42 important targets, including the 7 key targets were verified by literature mining. Twelve pairs of interactions between key targets and QSYQP’s compounds were validated by molecular docking. Further validation experiments suggested that QSYQP suppressed H/R induced apoptosis and cytoskeleton disruption of cardiomyocytes. Western blotting showed that the expression of cardiovascular diseases-related genes including ACTC1, FoxO1 and DIAPH1 was significantly decreased by establishing the hypoxia-reoxygenation model in vitro, while the protein expression of experimental group was significantly increased by adding QSYQP or its ingredients. Conclusion These results indicated the correlation of QSYQP treatment to the therapeutic effects of CVD. At the molecular level, this study revealed the multicomponent and multitargeting mechanisms of QSYQP in the regulation and treatment of cardiovascular diseases, potentially providing a reference for the further utilization of QSYQP.


2021 ◽  
Author(s):  
Yi Pan ◽  
Wanlu Zhao ◽  
Luping Qin ◽  
Lu Zhang

Abstract Background: Youguiyin (YGY) has been confirmed to treat osteoporosis (OP) in clinical trials, but its specific pharmacological mechanism remains unclear. This study aimed to explore the material basis and potential mechanism of YGY in the treatment of OP based on network pharmacology and molecular docking.Methods: Databases including TCMSP, SwissTargetPrediction database, OMIM, and TTD were used to predict the effective ingredients and relevant targets of YGY in the treatment of OP. The STRING database was used to reveal the relationship between each intersection target protein. Metascape database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis on the intersection targets. Cytoscape 3.6.0 software was used to show the complex network relationship of YGY in the treatment of OP. According to the results of network characteristics analysis, the core effective ingredients and the core targets were screened out. Autodock 4.0 was used for molecular docking and Pymol was used to visualize the docking results.Results: 290 effective ingredients, 1127 targets of the effective ingredients, 273 relevant targets of OP and 17 intersection targets were screened out in total by searching literature and databases. Intersection targets could affect biological processes including regulation of inflammatory response, ossification, negative regulation of post-transcriptional gene silencing, positive regulation of cytokine biosynthetic process and regulation of hormone levels by regulating signal pathways including TNF signaling pathway, osteoclast differentiation, apoptosis, MAPK signaling pathway and PI3K/Akt signaling pathway. Through screening, 14 core effective ingredients and 6 core targets were confirmed. The results of molecular docking showed that most of the core effective ingredients including α-humulene, cinnamaldehyde, denudatine, benzoylhypaconine and quercetin had good binding activity with the core targets including TNF-α, IL-1β and IL-6.Conclusion: Based on network pharmacology and molecular docking, the critical effective ingredients, key targets, important signal pathways and main biological processes of YGY in the treatment of OP were successfully screened out. This study revealed the material basis and the mechanism of YGY in the treatment of OP and provided a theoretical basis for follow-up experimental research and clinical application of YGY.


2021 ◽  
Author(s):  
tan xin ◽  
Wei Xian ◽  
Xiaorong Li ◽  
Yongfeng Chen ◽  
Jiayi Geng ◽  
...  

Abstract PurposeAtrial fibrillation (AF) is a common atrial arrhythmia. Quercetin (Que) has some advantages in the treatment of cardiovascular disease arrhythmias, but its specific drug mechanism of action needs further investigation. To explore the mechanism of action of Que in AF, core target speculation and analysis were performed using network pharmacology and molecular docking methods.MethodsQue chemical structures were obtained from Pubchem. TCMSP, Swiss Target Prediction, Drugbank , STITCH, Binding DB, Pharmmapper, CTD, GeneCards, DISGENET and TTD were used to obtain drug component targets and AF-related genes, and extract AF from normal tissues by GEO database differentially expressed genes. Then, the intersecting genes were obtained by online Wayne mapping tool. The intersection genes were introduced into the top five targets selected for molecular docking via protein-protein interaction (PPI) network to verify the binding activity between Que and the target proteins. GO and KEGG enrichment analysis of the intersected genes using program R was performed to further screen for key genes and key pathways.ResultsThere were 65 effective targets for Que and AF. Through further screening, the top 5 targets were IL6, VEGFA, JUN, MMP9 and EGFR. Que treatment of AF may involve signaling pathways such as lipid and atherosclerosis pathway, AGE-RAGE signaling pathway in diabetic complications, MAPK signaling pathway and IL-17 signaling pathway. Molecular docking suggests that Que has strong binding to key targets.ConclusionThis study systematically elucidates the key targets of Que treatment for AF and the specific mechanisms through network pharmacology as well as molecular docking, providing a new direction for further basic experimental exploration and clinical treatment.


2021 ◽  
Author(s):  
Jingyun Jin ◽  
Bin Chen ◽  
Xiangyang Zhan ◽  
Zhiyi Zhou ◽  
Hui Liu ◽  
...  

Abstract Background and objective: To predict the targets and signal pathways of Xiao-Chai-Hu-Tang (XCHT) in the treatment of colorectal cancer (CRC) based on network pharmacology, to further analyze its anti-CRC material basis and mechanism of action.Methods: TCMSP and TCMID databases were adopted to screen the active ingredients and potential targets of XCHT. CRC-related targets were retrieved by analyzing published microarray data (accession number GSE110224) from the Gene Expression Omnibus (GEO) database. The above common targets were used to construct the “herb-active ingredients-target” network by Cytoscape 3.8.0 software. And then, the protein-to-protein interaction(PPI)was constructed and analyzed with BisoGenet and CytoNCA plug-in in Cytoscape. Gene Ontology (GO) functional and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis for target genes were then performed using the R package of cluster Profiler. Further, AutoDock Vina software was used to conduct molecular docking studies on the active ingredients and key targets to verify the network pharmacological analysis results.Results: A total of 71 active ingredients of XCHT and 20 potential targets for anti-CRC were identified. The network analysis revealed that quercetin, stigmasterol, kaempferol, baicalein, acacetin may be the key compounds. And PTGS2, NR3C2, CA2, MMP1 may be the key targets. The active ingredients of XCHT interacted with most disease targets of CRC. It fully showed that XCHT exerted its therapeutic effect through the synergistic action of the multi-compound, multi-target, and multi-pathway. Gene ontology enrichment analysis showed 46 GO entries, including 20 biological processes, 6 cellular components, and 20 molecular functions. 11 KEGG signaling pathways had been identified, including IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, and NF-kappa B signaling pathway. It showed that XCHT played a role in the treatment of CRC by regulating different signal pathways. Molecular docking confirmed the correlation between five core compounds (including quercetin, stigmasterol, kaempferol, baicalein, and acacetin) and PTGS2.Conclusion: The potential active ingredients, possible targets, and key biological pathways for the efficacy of XCHT in the treatment of CRC were preliminarily described, which provided a theoretical basis for further experimental verification research.


2021 ◽  
Author(s):  
Yi Pan ◽  
Wanlu Zhao ◽  
Luping Qin ◽  
Lu Zhang

Abstract Background: Youguiyin (YGY) has been confirmed to treat osteoporosis (OP) in clinical trials, but its specific pharmacological mechanism remains unclear. This study aimed to explore the material basis and potential mechanism of YGY in the treatment of OP based on network pharmacology and molecular docking.Methods: Databases including TCMSP, SwissTargetPrediction database, OMIM, and TTD were used to predict the effective ingredients and relevant targets of YGY in the treatment of OP. The STRING database was used to reveal the relationship between each intersection target protein. Metascape database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis on the intersection targets. Cytoscape 3.6.0 software was used to show the complex network relationship of YGY in the treatment of OP. According to the results of network characteristics analysis, the core effective ingredients and the core targets were screened out. Autodock 4.0 was used for molecular docking and Pymol was used to visualize the docking results.Results: 290 effective ingredients, 1127 targets of the effective ingredients, 273 relevant targets of OP and 17 intersection targets were screened out in total by searching literature and databases. Intersection targets could affect biological processes including regulation of inflammatory response, ossification, negative regulation of post-transcriptional gene silencing, positive regulation of cytokine biosynthetic process and regulation of hormone levels by regulating signal pathways including TNF signaling pathway, osteoclast differentiation, apoptosis, MAPK signaling pathway and PI3K/Akt signaling pathway. Through screening, 14 core effective ingredients and 6 core targets were confirmed. The results of molecular docking showed that most of the core effective ingredients including α-humulene, cinnamaldehyde, denudatine, benzoylhypaconine and quercetin had good binding activity with the core targets including TNF-α, IL-1β and IL-6.Conclusion: Based on network pharmacology and molecular docking, the critical effective ingredients, key targets, important signal pathways and main biological processes of YGY in the treatment of OP were successfully screened out. This study revealed the material basis and the mechanism of YGY in the treatment of OP and provided a theoretical basis for follow-up experimental research and clinical application of YGY.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Gaoxiang Wang ◽  
Lin Zeng ◽  
Qian Huang ◽  
Zhaoqi Lu ◽  
Ruiqing Sui ◽  
...  

Background. Diabetic nephropathy (DN) is a common and serious complication of diabetes, but without a satisfactory treatment strategy till now. Liuwei Dihuang pills (LDP), an effective Chinese medicinal formula, has been used to treat DN for more than 1000 years. However, its underlying mechanism of action is still vague. Methods. Active compounds and corresponding targets of LDP were predicted from the TCMSP database. DN disease targets were extracted from the OMIM, GeneCards, TTD, DisGeNET, and DrugBank databases. Subsequently, the “herbal-compound-target” network and protein-protein interaction (PPI) network were constructed and analyzed via the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Molecular docking utilized AutoDock Vina and PyMOL software. Results. 41 active components and 186 corresponding targets of LDP were screened out. 131 common targets of LDP and DN were acquired. Quercetin, kaempferol, beta-sitosterol, diosgenin, and stigmasterol could be defined as five crucial compounds. JUN, MAPK8, AKT1, EGF, TP53, VEGFA, MMP9, MAPK1, and TNF might be the nine key targets. The enrichment analysis showed that common targets were mainly associated with inflammation reaction, oxidative stress, immune regulation, and cell apoptosis. AGE-RAGE and IL-17 were the suggested two significant signal pathways. Molecular docking revealed that the nine key targets could closely bind to their corresponding active compounds. Conclusion. The present study fully reveals the multicompound’s and multitarget’s characteristics of LDP in DN treatment. Furthermore, this study provides valuable evidence for further scientific research of the pharmacological mechanisms and broader clinical application.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Meiqi Wei ◽  
He Li ◽  
Qifang Li ◽  
Yi Qiao ◽  
Qun Ma ◽  
...  

Background. Gegen Qinlian (GGQL) decoction is a common Chinese herbal compound for the treatment of ulcerative colitis (UC). In this study, we aimed to identify its molecular target and the mechanism involved in UC treatment by network pharmacology and molecular docking. Material and Methods. The active ingredients of Puerariae, Scutellariae, Coptis, and Glycyrrhiza were screened using the TCMSP platform with drug ‐ like   properties   DL ≥ 0.18 and oral   availability   OB ≥ 30 % . To find the intersection genes and construct the TCM compound-disease regulatory network, the molecular targets were determined in the UniProt database and then compared with the UC disease differential genes with P value < 0.005 and ∣ log 2   fold   change ∣ > 1 obtained in the GEO database. The intersection genes were subjected to protein-protein interaction (PPI) construction and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After screening the key active ingredients and target genes, the AutoDock software was used for molecular docking, and the best binding target was selected for molecular docking to verify the binding activity. Results. A total of 146 active compounds were screened, and quercetin, kaempferol, wogonin, and stigmasterol were identified as the active ingredients with the highest associated targets, and NOS2, PPARG, and MMP1 were the targets associated with the maximum number of active ingredients. Through topological analysis, 32 strongly associated proteins were found, of which EGFR, PPARG, ESR1, HSP90AA1, MYC, HSPA5, AR, AKT1, and RELA were predicted targets of the traditional Chinese medicine, and PPARG was also an intersection gene. It was speculated that these targets were the key to the use of GGQL in UC treatment. GO enrichment results showed significant enrichment of biological processes, such as oxygen levels, leukocyte migration, collagen metabolic processes, and nutritional coping. KEGG enrichment showed that genes were particularly enriched in the IL-17 signaling pathway, AGE-RAGE signaling pathway, toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transcriptional deregulation in cancer, and other pathways. Molecular docking results showed that key components in GGQL had good potential to bind to the target genes MMP3, IL1B, NOS2, HMOX1, PPARG, and PLAU. Conclusion. GGQL may play a role in the treatment of ulcerative colitis by anti-inflammation, antioxidation, and inhibition of cancer gene transcription.


2021 ◽  
Author(s):  
Chunjuan He ◽  
Shishi Xing ◽  
Linna Peng ◽  
Dandan Li ◽  
Li Wang ◽  
...  

Abstract Background: Tibetan medicine Gaoyuan 'an capsule (GYAC) is widely used to prevent pulmonary edema at high altitude, but the specific mechanism of its action has not been explored. Therefore, based on bioinformatics and network pharmacology, this study analyzed the mechanism of improving hypoxia tolerance of GYAC, and provided new ideas for the prevention of altitude disease.Methods: The effective components and corresponding targets of GYAC were screened by using the Chinese herbal medicine network database, and the key targets of diseases were retrieved by using Genecards, OMIM and PubMed database with the key word "hypoxia". The drug targets and disease targets were mapped into common targets to obtain the final target. Cytoscape 3.7.2 was used to analyze the topological network and construct the Herbs-Components-Targets network and Core Targets-Signal Pathways network. GO function and KEGG enrichment analysis were performed to predict the mechanism of action, and molecular docking techniques were used to verify the binding force of target compounds and targets.Results: The results showed that GYAC enhanced hypoxia tolerance by simultaneously regulating the functions of various signaling proteins, including IL6、TNF、NOS3、VEGFA etc. The main regulatory pathways were HIF-1 signaling pathway, Chagas disease, and pathway in cancer. The main biological processes involved are the positive regulation of RNA polymerase II promoter transcription, the extracellular space as the cell component, and the cytokine activity as the molecular function. Molecular docking shows that hydrogen bonding is the main form of binding between drug molecules and proteins.Conclusions: GYAC is mainly directed at the interaction of HIF-1 signaling pathway with targets such as IL6 and TNF to improve the body's hypoxia tolerance, that is, they are multi-pathway, multi-pathway and multi-target interaction.


2021 ◽  
Author(s):  
Shao-Xuan Liu ◽  
Feng-Juan Han ◽  
Chun-Lan Zhang ◽  
Ying Shen ◽  
Jia Li ◽  
...  

Abstract Background and objective: Li Chong Wan (Li Chong pill, LCP) origin from Yi Xue Zhong Zhong Can Xi Lu, (Records of Chinese Medicine with Reference to Western Medicine), widely used in the treatment of endometriosis (EM) in China. The purpose of this study is to investigate the intrinsic mechanisms of LCP against EM and to provide new evidence for its clinical application.Methods: Chemical compounds of LCP were screened and evaluated via retrieving public databases and literature. We also acquired their putative targets and obtained EM-related targets. The above-mentioned data were visualized as a component-target network. In addition, we use Cytoscape3.8.0 to build a protein-protein interaction network and identified hub genes and key active ingredients. Furthermore, through GO and KEGG pathway analyses, which were actualized by R3.6.1 (based on clusterProfiler, org.Hs.eg.Db, and pathview package), we obtained effective signaling pathways and biological functions. Molecular docking was used to verify binding activity between compounds and the key targets at last.Results: Finally, a total of 122 possible active targets and 47 components were screened. Identify the core network and screen out 10 main targets; GO and KEGG enrichment analysis revealed that LCP may have functions of anti-inflammatory, anti-angiogenesis, inhibition of cell proliferation, regulation of hormone secretion, etc. The effect of LCP on EM might be achieved by PI3K/Akt signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway, and VEGF signaling pathway, etc. Finally, molecular docking results demonstrated that 14 components were exhibited good binding property to the key targets of EM.Conclusion: This research ocularly demonstrated the multi-component, multi-target, and multi-channel pharmacological effects for LCP in the treatments of EM and provides evidence for further clinical research and verification of the mechanism.


Sign in / Sign up

Export Citation Format

Share Document