scholarly journals An Investigation Into the Mechanism of Li Chong Pill for Treating Endometriosis Based on Network Pharmacology and Molecular Docking Verification

Author(s):  
Shao-Xuan Liu ◽  
Feng-Juan Han ◽  
Chun-Lan Zhang ◽  
Ying Shen ◽  
Jia Li ◽  
...  

Abstract Background and objective: Li Chong Wan (Li Chong pill, LCP) origin from Yi Xue Zhong Zhong Can Xi Lu, (Records of Chinese Medicine with Reference to Western Medicine), widely used in the treatment of endometriosis (EM) in China. The purpose of this study is to investigate the intrinsic mechanisms of LCP against EM and to provide new evidence for its clinical application.Methods: Chemical compounds of LCP were screened and evaluated via retrieving public databases and literature. We also acquired their putative targets and obtained EM-related targets. The above-mentioned data were visualized as a component-target network. In addition, we use Cytoscape3.8.0 to build a protein-protein interaction network and identified hub genes and key active ingredients. Furthermore, through GO and KEGG pathway analyses, which were actualized by R3.6.1 (based on clusterProfiler, org.Hs.eg.Db, and pathview package), we obtained effective signaling pathways and biological functions. Molecular docking was used to verify binding activity between compounds and the key targets at last.Results: Finally, a total of 122 possible active targets and 47 components were screened. Identify the core network and screen out 10 main targets; GO and KEGG enrichment analysis revealed that LCP may have functions of anti-inflammatory, anti-angiogenesis, inhibition of cell proliferation, regulation of hormone secretion, etc. The effect of LCP on EM might be achieved by PI3K/Akt signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway, and VEGF signaling pathway, etc. Finally, molecular docking results demonstrated that 14 components were exhibited good binding property to the key targets of EM.Conclusion: This research ocularly demonstrated the multi-component, multi-target, and multi-channel pharmacological effects for LCP in the treatments of EM and provides evidence for further clinical research and verification of the mechanism.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Mengshi Tang ◽  
Xi Xie ◽  
Pengji Yi ◽  
Jin Kang ◽  
Jiafen Liao ◽  
...  

Objective. To explore the main components and unravel the potential mechanism of simiao pill (SM) on rheumatoid arthritis (RA) based on network pharmacological analysis and molecular docking. Methods. Related compounds were obtained from TCMSP and BATMAN-TCM database. Oral bioavailability and drug-likeness were then screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Additionally, target genes related to RA were acquired from GeneCards and OMIM database. Correlations about SM-RA, compounds-targets, and pathways-targets-compounds were visualized through Cytoscape 3.7.1. The protein-protein interaction (PPI) network was constructed by STRING. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed via R packages. Molecular docking analysis was constructed by the Molecular Operating Environment (MOE). Results. A total of 72 potential compounds and 77 associated targets of SM were identified. The compounds-targets network analysis indicated that the 6 compounds, including quercetin, kaempferol, baicalein, wogonin, beta-sitosterol, and eugenol, were linked to ≥10 target genes, and the 10 target genes (PTGS1, ESR1, AR, PGR, CHRM3, PPARG, CHRM2, BCL2, CASP3, and RELA) were core target genes in the network. Enrichment analysis indicated that PI3K-Akt, TNF, and IL-17 signaling pathway may be a critical signaling pathway in the network pharmacology. Molecular docking showed that quercetin, kaempferol, baicalein, and wogonin have good binding activity with IL6, VEGFA, EGFR, and NFKBIA targets. Conclusion. The integrative investigation based on bioinformatics/network topology strategy may elaborate on the multicomponent synergy mechanisms of SM against RA and provide the way out to develop new combination medicines for RA.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yi Kuan Du ◽  
Yue Xiao ◽  
Shao Min Zhong ◽  
Yi Xing Huang ◽  
Qian Wen Chen ◽  
...  

Alzheimer’s disease is a common neurodegenerative disease in the elderly. This study explored the curative effect and possible mechanism of Acori graminei rhizoma on Alzheimer’s disease. In this paper, 8 active components of Acori graminei rhizoma were collected by consulting literature and using the TCMSP database, and 272 targets were screened using the PubChem and Swiss Target Prediction databases. Introduce it into the software of Cytoscape 3.7.2 and establish the graph of “drug-active ingredient-ingredient target.” A total of 276 AD targets were obtained from OMIM, Gene Cards, and DisGeNET databases. Import the intersection targets of drugs and diseases into STRING database for enrichment analysis, and build PPI network in the Cytoscape 3.7.2 software, whose core targets involve APP, AMPK, NOS3, etc. GO analysis and KEGG analysis showed that there were 195 GO items and 30 AD-related pathways, including Alzheimer’s disease pathway, serotonin synapse, estrogen signaling pathway, dopaminergic synapse, and PI3K-Akt signaling pathway. Finally, molecular docking was carried out to verify the binding ability between Acori graminei rhizoma and core genes. Our results predict that Acori graminei rhizoma can treat AD mainly by mediating Alzheimer’s signal pathway, thus reducing the production of Aβ, inhibiting the hyperphosphorylation of tau protein, regulating neurotrophic factors, and regulating the activity of kinase to change the function of the receptor.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haoxian Wang ◽  
Jihong Zhang ◽  
Qinqin Zhu ◽  
Xianyun Fu ◽  
Chenjie Li

Aim. This study aimed to predict the key targets and endocrine mechanisms of Guizhi Fuling Wan (GZFLW) in treating adenomyosis (AM) through network pharmacology, molecular docking, and animal experiment verification. Methods. The related ingredients and targets of GZFLW in treating AM were screened out using TCMSP, BATMAN-TCM, SwissTargetPrediction, and PubChem Database. Then, the protein-protein interaction (PPI) analysis and the network of compound-hub targets were constructed. At the same time, the key targets were uploaded to the Metascape Database for KEGG pathway enrichment analysis. After that, the molecular docking technology of the main active components and hub targets was performed. Furthermore, animal experiments were used to verify the results of network pharmacology analysis. Results. A total of 55 active ingredients of GZFLW and 44 overlapping targets of GZFLW in treating AM were obtained. After screening, 25 hub targets were collected, including ESR1, EGF, and EGFR. Then, the KEGG pathway enrichment analysis results indicated that the endocrine therapeutic mechanism of GZFLW against AM is mainly associated with the estrogen signaling pathway, endocrine resistance, and an EGFR tyrosine kinase signaling pathway. Then, molecular docking showed that the significant compounds of GZFLW had a strong binding ability with ERα and EGFR. More importantly, the animal experiments confirmed that the GZFLW could downregulate the abnormal infiltration of the endometrial epithelium into the myometrium and had no interference with the normal sexual cycle. This effect may be directly related to intervening the local estrogen signaling pathway of the endometrial myometrial interface (EMI). It may also be associated with the myometrium cells’ estrogen resistance via GPER/EGFR signaling pathway. Conclusion. The endocrine mechanism of GZFLW in treating AM was explored based on network pharmacology, molecular docking, and animal experiments, which provided a theoretical basis for the clinical application of GZFLW.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhengquan Huang ◽  
Xiaoqing Shi ◽  
Xiaochen Li ◽  
Li Zhang ◽  
Peng Wu ◽  
...  

Objective. To explore the molecular mechanism of Simiao powder in the treatment of knee osteoarthritis. Methods. Based on oral bioavailability and drug-likeness, the main active components of Simiao powder were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). GeneCard, OMIM, DisGeNET, DrugBank, PharmGkb, and the Therapeutic Target Database were used to establish target databases for knee osteoarthritis. Cytoscape software was used to construct a visual interactive network diagram of “active ingredient - action target – disease.” The STRING database was used to construct a protein interaction network and analyze related protein interaction relationships. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) biological process enrichment analysis were performed on the core targets. Additionally, Discovery Studio software was used for molecular docking verification of active pharmaceutical ingredients and disease targets. Results. Thirty-seven active components of Simiao powder were screened, including 106 common targets. The results of network analysis showed that the targets were mainly involved in regulating biological processes such as cell metabolism and apoptosis. Simiao powder components were predicted to exert their therapeutic effect on the AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, and HIF-1 signaling pathway. The molecular docking results showed that the active components of Simiao powder had a good match with the targets of IL1B, MMP9, CXCL8, MAPK8, JUN, IL6, MAPK1, EGF, VEGFA, AKT1, and PTGS2. Conclusion. Simiao powder has multisystem, multicomponent, and multitarget characteristics in treating knee osteoarthritis. Its possible mechanism of action includes inhibiting the inflammatory response, regulating immune function, and resisting oxidative stress to control the occurrence and development of the disease. Quercetin, wogonin, kaempferol, beta-sitosterol, and other active ingredients may be the material basis for the treatment of knee osteoarthritis.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yu-nan Liu ◽  
Xiao-jing Hu ◽  
Bei Liu ◽  
Yu-jie Shang ◽  
Wen-ting Xu ◽  
...  

Endometriosis is a chronic estrogen-dependent inflammatory disorder that negatively affects the quality of life in women. The Wenjing decoction (WJD) is a traditional Chinese medicine that has been shown to have a therapeutic effect on endometriosis. Our study systematically explored the mechanism of WJD against endometriosis using a network pharmacology approach. Potentially bioactive compounds of WJD and their possible targets were retrieved from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The protein-protein interaction network and herbs-compounds-genes multinetwork were constructed using Cytoscape for visualization. Subsequently, the signaling pathways of common targets were retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and molecular docking was performed using PyRx software. In total, 48 common targets were screened, such as IL6 and ESR1, which were related to inflammation and the endocrine system. The top five bioactive compounds were quercetin, kaempferol, wogonin, beta-sitosterol, and stigmasterol. KEGG enrichment analysis revealed 65 pathways containing inflammatory- and endocrine-related signaling pathways, such as the “TNF signaling pathway” and the “estrogen signaling pathway.” Taken together, the results of our network pharmacology analysis predicted that certain active ingredients of WJD might treat endometriosis by regulating inflammation and/or endocrine, which provided references for further understanding and exploration of WJD on endometriosis.


2021 ◽  
Author(s):  
tan xin ◽  
Wei Xian ◽  
Xiaorong Li ◽  
Yongfeng Chen ◽  
Jiayi Geng ◽  
...  

Abstract PurposeAtrial fibrillation (AF) is a common atrial arrhythmia. Quercetin (Que) has some advantages in the treatment of cardiovascular disease arrhythmias, but its specific drug mechanism of action needs further investigation. To explore the mechanism of action of Que in AF, core target speculation and analysis were performed using network pharmacology and molecular docking methods.MethodsQue chemical structures were obtained from Pubchem. TCMSP, Swiss Target Prediction, Drugbank , STITCH, Binding DB, Pharmmapper, CTD, GeneCards, DISGENET and TTD were used to obtain drug component targets and AF-related genes, and extract AF from normal tissues by GEO database differentially expressed genes. Then, the intersecting genes were obtained by online Wayne mapping tool. The intersection genes were introduced into the top five targets selected for molecular docking via protein-protein interaction (PPI) network to verify the binding activity between Que and the target proteins. GO and KEGG enrichment analysis of the intersected genes using program R was performed to further screen for key genes and key pathways.ResultsThere were 65 effective targets for Que and AF. Through further screening, the top 5 targets were IL6, VEGFA, JUN, MMP9 and EGFR. Que treatment of AF may involve signaling pathways such as lipid and atherosclerosis pathway, AGE-RAGE signaling pathway in diabetic complications, MAPK signaling pathway and IL-17 signaling pathway. Molecular docking suggests that Que has strong binding to key targets.ConclusionThis study systematically elucidates the key targets of Que treatment for AF and the specific mechanisms through network pharmacology as well as molecular docking, providing a new direction for further basic experimental exploration and clinical treatment.


2020 ◽  
Author(s):  
Can Wan ◽  
Ziyi Zhou ◽  
Yun Lu ◽  
Guangyao Zhang ◽  
Yefeng Cai ◽  
...  

Abstract Background: Previous studies have shown that Zhongfeng Xingnao Formula (ZXF) can effectively reduce the mortality of intracerebral hemorrhage (ICH), but the underlying mechanism of the treatment remained still unexplored. This study aimed to expound the potential mechanism of ZXF in the treatment of ICH through network pharmacology and molecular docking.Methods: The putative targets of ZXF were obtained from the TCMSP and Uniprot database, while the potential targets of ICH received from Drugbank, Genecards and OMIM database. Then through the Venn 2.1, the overlapping targets of disease and drug were gotten for the further study. The GO and KEGG enrichment analyses were performed by R version 4.0.2 software so that the signaling pathway was acquired to the subsequent analysis. Cytoscape was used to construct the drug-compound-target-pathway network and String was utilized for the protein-protein interaction network. What’s more, the interaction between compound and target was verified by the AutoDockTools and Autodock Vina. Results: There were a total of 166 ZXF-related targets and 1258 ICH-related targets obtained from the public databases. And 87 potential targets were both related to drug and disease. The GO enrichment analysis mainly involved receptor ligand activity, signaling receptor activator activity, and cytokine receptor binding, while the signaling pathway, such as Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt signaling pathway, were significantly enriched in the KEGG enrichment analysis. The molecular docking elucidated that the aloe-emodin, beta-sitosterol, quercetin could bound well to the top five targets sorted by degree value.Conclusions: ZXF treated ICH through multiple compounds, multiple targets, and multiple pathways. The underlying mechanism of the treatment may be promoting angiogenesis, anti-inflammatory, anti-oxidative stress, and reversing atherosclerosis, which is of great significance for the treatment of ICH.


Author(s):  
Xianhai Li ◽  
Hua Tang ◽  
Qiang Tang ◽  
Wei Chen

Huang-Lian-Jie-Du decoction (HLJDD) has been used to treat pneumonia for thousands of years in China. However, our understanding of its mechanisms on treating pneumonia is still unclear. In the present work, network pharmacology was used to analyze the potential active ingredients and molecular mechanisms of HLJDD on treating pneumonia. A total of 102 active ingredients were identified from HLJDD, among which 54 were hit by the 69 targets associated with pneumonia. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we obtained the main pathways associated with pneumonia and those associated with the mechanism of HLJDD in the treatment of pneumonia. By constructing the protein–protein interaction network of common targets, 10 hub genes were identified, which were mainly involved in the tumor necrosis factor (TNF) signaling pathway, interleukin 17 (IL-17) signaling pathway, and nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Moreover, the results of molecular docking showed that the active ingredients of HLJDD had a good affinity with the hub genes. The final results indicate that HLJDD has a greater effect on bacterial pneumonia than on viral pneumonia. The therapeutic effect is mainly achieved by regulating the host immune inflammatory response and oxidative stress reaction, antibacterial microorganisms, alleviating the clinical symptoms of pneumonia, repairing damaged cells, and inhibiting cell migration.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Meiqi Wei ◽  
He Li ◽  
Qifang Li ◽  
Yi Qiao ◽  
Qun Ma ◽  
...  

Background. Gegen Qinlian (GGQL) decoction is a common Chinese herbal compound for the treatment of ulcerative colitis (UC). In this study, we aimed to identify its molecular target and the mechanism involved in UC treatment by network pharmacology and molecular docking. Material and Methods. The active ingredients of Puerariae, Scutellariae, Coptis, and Glycyrrhiza were screened using the TCMSP platform with drug ‐ like   properties   DL ≥ 0.18 and oral   availability   OB ≥ 30 % . To find the intersection genes and construct the TCM compound-disease regulatory network, the molecular targets were determined in the UniProt database and then compared with the UC disease differential genes with P value < 0.005 and ∣ log 2   fold   change ∣ > 1 obtained in the GEO database. The intersection genes were subjected to protein-protein interaction (PPI) construction and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After screening the key active ingredients and target genes, the AutoDock software was used for molecular docking, and the best binding target was selected for molecular docking to verify the binding activity. Results. A total of 146 active compounds were screened, and quercetin, kaempferol, wogonin, and stigmasterol were identified as the active ingredients with the highest associated targets, and NOS2, PPARG, and MMP1 were the targets associated with the maximum number of active ingredients. Through topological analysis, 32 strongly associated proteins were found, of which EGFR, PPARG, ESR1, HSP90AA1, MYC, HSPA5, AR, AKT1, and RELA were predicted targets of the traditional Chinese medicine, and PPARG was also an intersection gene. It was speculated that these targets were the key to the use of GGQL in UC treatment. GO enrichment results showed significant enrichment of biological processes, such as oxygen levels, leukocyte migration, collagen metabolic processes, and nutritional coping. KEGG enrichment showed that genes were particularly enriched in the IL-17 signaling pathway, AGE-RAGE signaling pathway, toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transcriptional deregulation in cancer, and other pathways. Molecular docking results showed that key components in GGQL had good potential to bind to the target genes MMP3, IL1B, NOS2, HMOX1, PPARG, and PLAU. Conclusion. GGQL may play a role in the treatment of ulcerative colitis by anti-inflammation, antioxidation, and inhibition of cancer gene transcription.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Longjie Wang ◽  
Jialiang Lin ◽  
Weishi Li

Background. Intervertebral disc degeneration (IVDD) is the most significant cause of low back pain, the sixth-largest disease burden globally, and the leading cause of disability. This study is aimed at investigating the molecular biological mechanism of Danggui-Sini formula (DSF) mediated IVDD treatment. Methods. A potential gene set for DSF treatment of IVDD was identified through TCMSP, UniProt, and five disease gene databases. A protein interaction network of common targets between DSF and IVDD was established by using the STRING database. GO and KEGG enrichment analyses were performed using the R platform to discover the potential mechanism. Moreover, AutoDock Vina was used to verify molecular docking and calculate the binding energy. Results. A total of 119 active ingredients and 136 common genes were identified, including 10 core genes (AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3, CASP3, JUN, and EGF). Enrichment analysis results showed that the therapeutic targets of DSF for diseases mainly focused on the AGE-RAGE signaling pathway involved in diabetic complications, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, apoptosis, cellular senescence, PI3K-Akt signaling pathway, and FoxO signaling pathway. These biological processes are induced mainly in response to oxidative stress and reactive oxygen species and the regulation of apoptotic signaling pathways. Molecular docking showed that there was a stable affinity between the core genes and the key components. Conclusions. The combination of network pharmacology and molecular docking provides a practical way to analyze the molecular biological mechanism of DSF-mediated IVDD treatment, which confirms the “multicomponent, multitarget and multipathway” characteristics of DSF and provides an essential theoretical basis for clinical practice.


Sign in / Sign up

Export Citation Format

Share Document