scholarly journals The influence factors for gas adsorption with different ranks of coals

2017 ◽  
Vol 36 (3-4) ◽  
pp. 904-918 ◽  
Author(s):  
Deyong Guo ◽  
Xiaojie Guo

In this paper, scanning electron microscopy, low-temperature N2 adsorption and CH4 isothermal adsorption experiments were performed on 11 coal samples with Ro,max between 0.98 and 3.07%. The pore structure characteristics of coals (specific surface area, total volume distribution) were studied to assess the gas adsorption capacity. The results indicate that there is significant heterogeneity on coal surface, containing numerous channel-like pores, bottle-shaped pores and wedge-shaped pores. Both Langmuir volume (VL) and Langmuir pressure (PL) show a stage change trend with the increase of coalification degree. For different coalification stages, there exist different factors influencing the VL and PL values. For low-rank coals (Ro,max < 1.1%), the increase of VL values and decrease of PL values are mainly due to the abundant primary pore and fracture within coal. For middle-rank coals (1.1% < Ro,max < 2.1%), the moisture content, vitrinite content and total pore volume are all the factors influencing VL, and the reduction of PL is mainly attributed to the decrease of moisture content and inertinite content. Meanwhile, this result is also closely related to the pore shape. For high-rank coals (Ro,max > 2.1%), VL values gradually increase and reach the maximum. When the coal has evolved into anthracite, liquid hydrocarbon within pore begins pyrolysis and gradually disappears, and a large number of macropores are converted into micropores, leading to the increase of specific surface area and total pore volume, corresponding to the increase of VL. In addition, the increase of vitrinite content within coal also contributes to the increase of VL. PL, reaches the minimum, indicating that the adsorption rate reaches the largest at the low pressure stage. The result is mainly controlled by the specific surface area and total pore volume of coal samples. This research results will provide a clearer insight into the relationship between adsorption parameters and coal rank, moisture content, maceral composition and pore structure, and it is of great significance for better assessing the gas adsorption capacity.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6074-6082
Author(s):  
Weikai Wang ◽  
Minghan Li ◽  
Jiabin Cai

In order to study the effects of a messmate heartwood extraction process on its cell wall pore structure and its drying ability, its nanopore structure was explored after via gas adsorption technology. Specifically, the messmate heartwood particles were extracted with methanol, and then the cell wall pore structure of the original and extracted samples were evaluated by N2 and CO2 sorption and pycnometer methods, respectively. Overall, compared with the original samples, the cell wall porosity, micropore volume, mesopore volume, BET specific surface area, and specific surface area of the micropores of the extracted messmate heartwoods increased by 2.55%, 0.007 cm3/g, 0.0014 cm3/g, 0.24 m2·g-1, and 21.9 m2·g-1, respectively. The cell wall pore volume measured via the gas adsorption method was smaller than the measurement from the pycnometer method. The results indicated that the presence of extractives made the messmate cell wall have a decreased pore volume and porosity, which may be one of the reasons messmate wood is difficult to dry. Messmate extractives primarily were present in the micropores of the cell wall in the range of 0.4 nm to 0.7 nm. However, gas sorption technology could not detect all the pores in the cell wall of the messmate heartwood sample.


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


2018 ◽  
Vol 37 (1) ◽  
pp. 251-272 ◽  
Author(s):  
Junjian Zhang ◽  
Chongtao Wei ◽  
Gaoyuan Yan ◽  
Guanwen Lu

To better understand the structural characteristic of adsorption pores (pore diameter < 100 nm) of coal reservoirs around the coalbed methane production areas of western Yunnan and eastern Guizhou, we analyzed the structural and fractal characteristics of pore size range of 0.40–2.0 nm and 2–100 nm in middle–high rank coals ( Ro,max = 0.93–3.20%) by combining low-temperature N2/CO2 adsorption tests and surface/volume fractal theory. The results show that the coal reservoirs can be divided into three categories: type A ( Ro,max < 2.15%), type B (2.15% <  Ro,max <2.50%), and type C ( Ro,max > 2.15%). The structural parameters of pores in the range from 2 to 100 nm are influenced by the degree of coal metamorphism and the compositional parameters (e.g., ash and volatile matter). The dominant diameters of the specific surface areas are 10–50 nm, 2–50 nm, and 2–10 nm, respectively. The pores in the range from <2 nm provide the largest proportion of total specific surface area (97.22%–99.96%) of the coal reservoir, and the CO2-specific surface area and CO2-total pore volume relationships show a positive linear correlation. The metamorphic degree has a much greater control on the pores (pore diameter less than 2 nm) structural parameters than those of the pore diameter ranges from 2 to 100 nm. Dv1 and Dv2 can characterize the structure of 2–100 nm adsorption pores, and Dv1 (volume heterogeneity) has a positive correlation with the pore structural parameters such as N2-specific surface area and N2-total pore volume. This parameter can be used to characterize volume heterogeneity of 2–10 nm pores. Dv2 (surface heterogeneity) showed type A > type B > type C and was mainly affected by the metamorphism degree. Ds2 can be used to characterize the pore surface heterogeneity of micropores in the range of 0.62–1.50 nm. This parameter has a good correlation with the pore parameters (CO2-total pore volume, CO2-specific surface area, and average pore size) and is expressed as type C < type B < type A. In conclusion, the heterogeneity of the micropores is less than that of the meso- and macropores (2–100 nm). Dv1, Dv2, and Ds2 can be used as effective parameters to characterize the pore structure of adsorption pores. This result can provide a theoretical basis for studying the pore structure compatibility of coal reservoirs in the region.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 896 ◽  
Author(s):  
Hye-Min Lee ◽  
Kwan-Woo Kim ◽  
Young-Kwon Park ◽  
Kay-Hyeok An ◽  
Soo-Jin Park ◽  
...  

In this study, low-density polyethylene (LDPE)-derived activated carbons (PE-AC) were prepared as electrode materials for an electric double-layer capacitor (EDLC) by techniques of cross-linking, carbonization, and subsequent activation under various conditions. The surface morphologies and structural characteristics of the PE-AC were observed by field-emission scanning electron microscope, Cs-corrected field-emission transmission electron microscope, and X-ray diffraction analysis, respectively. The nitrogen adsorption isotherm-desorption characteristics were confirmed by Brunauer–Emmett–Teller, nonlocal density functional theory, and Barrett–Joyner–Halenda equations at 77 K. The results showed that the specific surface area and total pore volume of the activated samples increased with increasing the activation time. The specific surface area, the total pore volume, and mesopore volume of the PE-AC were found to be increased finally to 1600 m2/g, 0.86 cm3/g, and 0.3 cm3/g, respectively. The PE-AC also exhibited a high mesopore volume ratio of 35%. This mesopore-rich characteristic of the activated carbon from the LDPE is considered to be originated from the cross-linking density and crystallinity of precursor polymer. The high specific surface area and mesopore volume of the PE-AC led to their excellent performance as EDLC electrodes, including a specific capacitance of 112 F/g.


2019 ◽  
Vol 7 (2) ◽  
pp. T547-T563 ◽  
Author(s):  
Jiyuan Wang ◽  
Shaobin Guo

To systematically study the whole-aperture pore-structure characteristics of the marine-continental transitional shale facies in the Upper Palaeozoic Taiyuan and Shanxi Formations of the Qinshui Basin, we have collected a total of 11 samples for high-pressure mercury intrusion, low-pressure gas adsorption ([Formula: see text] and [Formula: see text]), nuclear magnetic resonance (NMR), and field-emission scanning electron microscopy with argon-ion polishing experiments to determine the pore morphology and distribution characteristics of shale samples in detail and to perform quantitative analyses. Then compared the pore-development characteristics of the Taiyuan Formation samples with those of the Shanxi Formation to determine which is preferable. The experimental results indicate that the shale samples of the Qinshui Basin mainly develop three types of pores: organic pores, intergranular pores, and microfractures. High-pressure mercury intrusion and gas-adsorption experiments indicate that the pore-size distributions exhibit multiple peaks. The samples contained varying proportions of macropores, mesopores, and micropores, among which the former two are dominant, accounting for approximately 85% of the total pore volume, whereas micropores account for only 15%. However, mesopores and micropores dominate the specific surface area; between them, the micropores are much more prevalent, accounting for more than 99% of the total specific surface area. Macropores contribute less than 1% of the specific surface area and therefore can be neglected. The pore morphology resembles the slit type parallel platy pores with a ballpoint pen structure. The NMR [Formula: see text] spectra have multiple-peak values. In addition, the large difference between the curved areas before and after centrifugation indicates that the samples contain a large proportion of mesopores and macropores, which is consistent with the results presented above. The results demonstrate that the development of pores in the Taiyuan Formation is better than that in the Shanxi Formation.


Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 81 ◽  
Author(s):  
Reyna Ojeda-López ◽  
J. Marcos Esparza-Schulz ◽  
Isaac J. Pérez-Hermosillo ◽  
Armin Hernández-Gordillo ◽  
Armando Domínguez-Ortiz

Carbon microfibers (CMF) has been used as an adsorbent material for CO2 and CH4 capture. The gas adsorption capacity depends on the chemical and morphological structure of CMF. The CMF physicochemical properties change according to the applied stabilization and carbonization temperatures. With the aim of studying the effect of stabilization temperature on the structural properties of the carbon microfibers and their CO2 and CH4 adsorption capacity, four different stabilization temperatures (250, 270, 280, and 300 °C) were explored, maintaining a constant carbonization temperature (900 °C). In materials stabilized at 250 and 270 °C, the cyclization was incomplete, in that, the nitrile groups (triple-bond structure, e.g., C≡N) were not converted to a double-bond structure (e.g., C=N), to form a six-membered cyclic pyridine ring, as a consequence the material stabilized at 300 °C resulting in fragile microfibers; therefore, the most appropriate stabilization temperature was 280 °C. Finally, to corroborate that the specific surface area (microporosity) is not the determining factor that influences the adsorption capacity of the materials, carbonization of polyacrylonitrile microfibers (PANMFs) at five different temperatures (600, 700, 800, 900, and 1000 °C) is carried, maintaining a constant temperature of 280 °C for the stabilization process. As a result, the CMF chemical composition directly affects the CO2 and CH4 adsorption capacity, even more directly than the specific surface area. Thus, the chemical variety can be useful to develop carbon microfibers with a high adsorption capacity and selectivity in materials with a low specific surface area. The amount adsorbed at 25 °C and 1.0 bar oscillate between 2.0 and 2.9 mmol/g adsorbent for CO2 and between 0.8 and 2.0 mmol/g adsorbent for CH4, depending on the calcination treatment applicated; these values are comparable with other material adsorbents of greenhouse gases.


2020 ◽  
Vol 38 (5) ◽  
pp. 1484-1514 ◽  
Author(s):  
Rongfang Qin ◽  
Anmin Wang ◽  
Daiyong Cao ◽  
Yingchun Wei ◽  
Liqi Ding ◽  
...  

The physical properties of thick coal seams show strong vertical heterogeneity; thus, an accurate characterization of their pore structure is essential for coalbed methane (CBM) exploration and production. A total of 18 coal samples, collected from a thick coal seam in the Yili Basin of NW China, were tested by a series of laboratory experiments to investigate the peat mire evolution and pore structure characteristics. The results show that the No. 4 coal seam has undergone multiple stages of evolution in the peatification stage, and was divided into four water-transgression/water-regression cycles according to the regular cyclic changes of the vitrinite/inertinite ratio, structure preservation index, gelification index, vegetation index, trace element ratios, and stable carbon isotopes of organic matter. The changes of pore structure characteristics with the changes of coal deposition cycles are also analyzed. It is concluded that pore structure characteristics of the four cycles are quite different. In each water-transgression cycle, the vitrinite gradually increased and the inertinite gradually decreased, resulting in a decrease of the porosity, pore volume, specific surface area, and fractal dimension. While in each water-regression cycle, the vitrinite gradually decreased and the inertinite gradually increased, leading to an increase of the porosity, pore volume, specific surface area, and fractal dimension. A strong relationship exists between the porosity, pore volume, specific surface area, fractal dimension, and submacerals, with fusinite and semifusinite which contained more pores having a positive correlation, desmocollinite and corpovitrinite which contained few pores having a negative correlation.


2011 ◽  
Vol 239-242 ◽  
pp. 2274-2279 ◽  
Author(s):  
Ying Chun Wang ◽  
Wen Hai Huang ◽  
Ai Hua Yao ◽  
De Ping Wang

A simple method to prepare hollow hydroxyapatite (HAP) microspheres with mespores on the surfaces is performed using a precipitation method assisted with Li2O-CaO-B2O3(LCB) glass fabrication process. This research is concerned with the effect of sintering temperature on the microstructure evolution, phase purity, surface morphology, specific surface area, and porosity after sintering process. The microspheres were sintered in air atmosphere at temperatures ranging from 500 to 900 °C. The starting hollow HAP microspheres and the sintered specimens were characterized by scanning electron microscope, X-ray diffractometer, specific surface area analyzer, and Hg porosimetry, respectively. The as-prepared microspheres consisted of calcium deficient hydroxyapatite. The results showed that the as-prepared hollow HAP microspheres had the highest specific surface areas, and the biggest total pore volume. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2~40 nm. The specific surface area and total pore volume of hollow HAP microspheres decreased with increasing sintering temperature. Whereas the mean pore size increased with increasing sintering temperature. It showed that at 700°C, Ca-dHAP decomposes into a biphasic mixture of HAP and β-calcium phosphate(TCP).


2011 ◽  
Vol 194-196 ◽  
pp. 2472-2479 ◽  
Author(s):  
Bao Lin Xing ◽  
Chuan Xiang Zhang ◽  
Lun Jian Chen ◽  
Guang Xu Huang

Activated carbons (ACs) were prepared from lignite by microwave (MW) and electrical furnace (EF) heating with KOH as activation agent. In order to compare pore structures and electrochemical performances of ACs prepared by both heating methods, the ACs were characterized by N2 adsorption at 77K, X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical performances of Electrochemical capacitors (ECs) with ACs as electrodes in 3mol/L KOH electrolyte were evaluated by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the pore structures of ACs prepared by MW and EF heating significantly enhance when the weight ratio of KOH to coal increases from 2 to 4. The BET specific surface area, total pore volume, the ratio of mesopore and average pore diameter of ACs prepared by MW heating (denoted as AC-MW4) reaches 2094m2/g, 1.193cm3/g, 53.6%, 2.28nm when the weight ratio of KOH to coal is 4, and ACs prepared by EF heating (denoted as AC-EF4) reaches 2580m2/g, 1.683cm3/g, 67.3%, 2.61nm. The ECs with AC-MW4 and AC-EF4 as electrodes present a high specific capacitance of 348F/g and 377F/g at a current density of 50mA/g, and still remain 325F/g and 350F/g after 500 cycles, respectively. Although the specific surface area, total pore volume and specific capacitance of ACs prepared by MW heating are slightly lower than EF heating, taking into account the heating time in the activation process, ACs prepared by EF heating needs approximate 140min, while MW heating only needs 10min, which have demonstrated that microwave heating technology is a promising and efficient technique to prepare ACs.


Sign in / Sign up

Export Citation Format

Share Document