Development and Characterization of Biobased Polyamide 56/Polyethylene Terephthalate Composite Fibers

2021 ◽  
Vol 15 (4) ◽  
pp. 521-527
Author(s):  
Gong Xiaorong ◽  
Zhang Shouyun

The present research studied the production process and performance of biobased PA56 (polyamide 56) and PET (polyethylene terephthalate) composite fibers through melt side-by-side spinning. The results showed that biobased PA56 and PET composites with strength of 4.0–4.3 CN/dtex were prepared by applying a spinning speed of 4,000–4,050 m/min, draw ratio of 2.50–2.70, first heat roll temperature of 80–90 °C, second heat roll temperature of 160–165 °C, and the addition of 5% compatibilizer between the two components. The fibers and fabric showed high moisture absorption, good air permeability, and excellent antistatic properties. The saturated moisture absorption rate was 11.2%, the air permeability was 9680 g/(m2·d), and the specific resistance was 1080*1010 Ω·m.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5287
Author(s):  
Hiwa Mahmoudi ◽  
Michael Hofbauer ◽  
Bernhard Goll ◽  
Horst Zimmermann

Being ready-to-detect over a certain portion of time makes the time-gated single-photon avalanche diode (SPAD) an attractive candidate for low-noise photon-counting applications. A careful SPAD noise and performance characterization, however, is critical to avoid time-consuming experimental optimization and redesign iterations for such applications. Here, we present an extensive empirical study of the breakdown voltage, as well as the dark-count and afterpulsing noise mechanisms for a fully integrated time-gated SPAD detector in 0.35-μm CMOS based on experimental data acquired in a dark condition. An “effective” SPAD breakdown voltage is introduced to enable efficient characterization and modeling of the dark-count and afterpulsing probabilities with respect to the excess bias voltage and the gating duration time. The presented breakdown and noise models will allow for accurate modeling and optimization of SPAD-based detector designs, where the SPAD noise can impose severe trade-offs with speed and sensitivity as is shown via an example.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 785
Author(s):  
Veridiana G. Guimarães ◽  
Anastasiia Svanidze ◽  
Tianyi Guo ◽  
Pawan Nepal ◽  
Robert J. Twieg ◽  
...  

Cholesteric liquid crystals are frequently produced by the addition of chiral dopants to achiral nematic hosts. We report here the synthesis and performance of chiral dopants obtained from bio-betulin produced by a fermentation process. An important aspect of this work is to point out that the fermentation process used to obtain the starting materials is much easier and cheaper when carried out in large volumes than isolating it from the natural product. The performance of the dopants obtained from bio-betulin is indistinguishable from those obtained from commercially available synthetic betulin.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2761
Author(s):  
Leszek Resner ◽  
Sandra Paszkiewicz

With wind turbines increasing in size, installed at greater distances from the mainland, and greater depths, submarine cables are facing new challenges. Materials and technologies used so far for the production of submarine cables with lead, aluminium, or copper sheaths make them unsuitable or even obsolete for modern solutions such as floating wind farms. The article discusses types of submarine cables, their construction, working conditions, and operational factors, with emphasis placed on the role of the radial water barrier. The focus has been placed on dry and semi-dry designs. The article is also devoted to a discussion regarding directions of further development, possible materials, and constructions that may appear in the future. Current research and results regarding the use of multi-layer coatings with the use of thermoplastic block copolymers for the layer with high moisture absorption are also presented.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Desmond E. P. Klenam ◽  
Michael O. Bodunrin ◽  
Stefania Akromah ◽  
Emmanuel Gikunoo ◽  
Anthony Andrews ◽  
...  

Abstract An overview of the characterisation of rust by colour is presented. Each distinct rust colour is caused by atmospheric impurities, high or low moisture content and high or low oxygen environment over time. Yellow rust is mainly due to the high moisture environment over a period of time, which drips. Brown rust is dry, crusty and due to water and oxygen contact with localised patches on component surfaces. Black rust, the most stable form, occurs in low moisture and low oxygen environment. The rust residue shows where the reaction started, especially in contact with chlorides. The causative factors of red rust are atmospheric and similar to black rust in a chloride-containing environment. The effect of packaging, manufacturing and environmental factors on rust colour is briefly discussed. Visual characterization of rust could pre-empt root causes and analytical tools for validation. The limitations of these concepts are mentioned and directions for future research highlighted.


Author(s):  
Stephanie Drozek ◽  
Christopher Damm ◽  
Ryan Enot ◽  
Andrew Hjortland ◽  
Brandon Jackson ◽  
...  

The purpose of this paper is to describe the implementation of a laboratory-scale solar thermal system for the Renewable Energy Systems Laboratory at the Milwaukee School of Engineering (MSOE). The system development began as a student senior design project where students designed and fabricated a laboratory-scale solar thermal system to complement an existing commercial solar energy system on campus. The solar thermal system is designed specifically for educating engineers. This laboratory equipment, including a solar light simulator, allows for variation of operating parameters to investigate their impact on system performance. The equipment will be utilized in two courses: Applied Thermodynamics, and Renewable Energy Utilization. During the solar thermal laboratories performed in these courses, students conduct experiments based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) 93-2010 standard for testing and performance characterization of solar thermal systems. Their measurements are then used to quantify energy output, efficiency and losses of the system and subsystem components.


1990 ◽  
Vol 211 ◽  
Author(s):  
Miguel A. Sanjuan ◽  
A. Moragues ◽  
B. Bacle ◽  
C. Andrade

AbstractThe permeability of concrete to gases is of direct importance to the durability of concrete structures, because of carbon dioxide flowing through the concrete favour lime carbonation and reinforcing steel corrosion.Mortar with and without polypropylene fibres having water/cementitious ratios of 0.30, 0.35 and 0.40 and a cement/sand ratio of 1/1 were studied. Polypropylene dosage varied from 0.1 to 0.3% by volume of cement.The characterization of mortar permeability was made using cylindrical shaped samples (3 cm height and 15 cm diameter). These specimens were 28 days cured and then dried before the test.The addition of fibres results in a decrease of air permeability. Variation of the water/cement ratio is of lesser importance than fiber addition.


Sign in / Sign up

Export Citation Format

Share Document