Effects of Coating by Chitosan, TiO2 Nanoparticles, and Sodium Tripolyphosphate as Crosslinker on Stored Cucumber Fruits

2021 ◽  
Vol 15 (5) ◽  
pp. 598-605
Author(s):  
Rokayya Sami ◽  
Ebtihal Khojah ◽  
Mahmoud Helal ◽  
Abeer Elhakem ◽  
Nada Benajiba ◽  
...  

Cucumber fruit contains essential nutrients and fibers and is used widely in salads dressing. Scarce research is available on its storage with nanoparticles and chitosan combined effects. Hence, the objective of this current research was to evaluate some Physico-chemical properties and microbial activity after coating with the combination of chitosan, TiO2 nanoparticles, and sodium tripolyphosphate to enhance the cucumbers storability and prolong the shelf-life. The cucumbers fruits were divided into four groups and dipped into several coating solutions for 10 minutes such as distilled water (Cu-uncoated), chitosan 1% (Cu-Chitosan), chitosan 1%, titanium dioxide nanoparticles 1% (Cu-Chitosan-TDN), and chitosan 1%, titanium dioxide nanoparticles 1%, sodium tripolyphosphate 2% (Cu-Chitosan-TDN-ST), respectively. The cucumber samples were then air-dried at ambient temperature and chilled to 10 °C for storage and evaluation for every seven days until three weeks. Cu-uncoated had the highest weight loss with a value of 5.15%, followed by Cu-Chitosan 4.11% while Cu-Chitosan-TDN and Cu-Chitosan-TDN-ST reported the least weight loss of (3.43% and 3.01%, respectively) after 7 days of the storage period. The results reported that the firmness of the samples was found to be decreased during the whole storage time except in the treatments Cu-Chitosan-TDN-ST and Cu-Chitosan-TDN in which it was noticed to be better in firmness after 21 days of storage (55.12 N/mm and 50.67 N/mm), respectively. Total soluble solids were lower in the coated cucumbers compared with the uncoated samples. Titratable acidity of Cu-Chitosan-TDN-ST 0.26% treated sample increased more as compared with Cu-Chitosan-TDN 0.24% samples at the end of the storage period. The highest increase in pectin content was recorded for Cu-Chitosan-TDN samples 0.042 g/100 g on the 21st day. Nano-coating with the combination of chitosan declared the dietary fiber content changes rate than in samples with the addition of sodium tripolyphosphate. Besides, the antimicrobial activity of the chitosan/nanofilms has been improved with the addition of sodium tripolyphosphate as crosslinker 3.67 CFU/g on the 21st day of storage. Thus, nano-coating with the combination of sodium tripolyphosphate has proven to be efficient method in extending the shelf-life of cucumber samples.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmoud Helal ◽  
Rokayya Sami ◽  
Ebtihal Khojah ◽  
Abeer Elhakem ◽  
Nada Benajiba ◽  
...  

AbstractCucumber is a highly perishable fruit, that can easily suffer from water loss, condensation, shriveling, yellowing and decay. The present investigation aim was to extending the shelf-life of cucumber using eco-friendly sodium tripolyphosphate and nano-material. Decay; hardness; succinate dehydrogenase activity (SDH); condensation and shriveling rates; and visual quality assessments of cucumbers fruits were evaluated during 21 days of storage period at 10 °C. There was a slight incidence of decay among (Chitosan/Titanium Dioxide Nanoparticles) CS-TiO2 and (Chitosan/Titanium Dioxide Nanoparticles/Sodium Tripolyphosphate) CS-TiO2-STP samples, which reported the lowest decay incidence 2.21% in CS-TiO2, while CS-TiO2-STP did not show any decay at end of storage period. CS-TiO2-STP recorded the lowest value in SDH activity 0.08 ∆OD min−1 mg protein−1. Very slight hardness, water condensation, and shriveling were detected in CS-TiO2 samples, while CS-TiO2-STP was the lowest compared with other SC samples and control. In general, CS-TiO2-STP treatment was found most potential to enhance the postharvest shelf life of cucumber throughout the storage period up to 21 day.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-47
Author(s):  
R. Osae G. Essilfie J. O. Anim

The study was conducted to assess the effect of different waxing materials on the quality attributes of tomato fruits. A 2 x8 factorial experiment layout in complete randomized design with 16 treatment combinations and 3 replication was adopted.The materials that were used for the experiment are two (2) varieties of tomatoes (Pectomech and Power Rano) and seven(7) waxing material (shea butter, cassava starch, beeswax, and a combination of shea butter + cassava starch, shea butter + beeswax, cassava starch + beeswax, shea butter + cassava starch + beeswax) and a control. Results from the experiment indicated that all waxing treatments delayed the development of weight loss, firmness, pH, total soluble solids, and total titrable acidity. The results also suggested that edible wax coatings delayed the ripening process and colour development of tomato fruits during the storage period and extended the shelf life. However Beewax treatment and its combinations performed better than the other treatments. It was therefore recommended that locally produced wax such as Beewax, Shea butter, Cassava Starch treatments and their combinations could be a good technology for preserving the quality and extending the shelf life of fresh tomato fruit as well as maintaining the physical and chemical properties.


2019 ◽  
Vol 6 (1) ◽  
pp. 41-54
Author(s):  
Md. Belal Hossain Sikder ◽  
M Muksitu Islam

Banana is highly perishable fruit and shelf life is short, which leads resulting post-harvest loss consistently in Bangladesh. To lessen the post-harvest loss and draw out the time span of the usability of banana, green mature bananas were treated with 0.5%, 0.75%, and 1% chitosan, individually. For the subsequent treatments, bananas were stored at room temperature. The viability of the coating in extending fruit’s shelf-life was assessed by evaluated total weight loss, ash content, total soluble solids (TSS), pH, titratable acidity (TA), disease severity and shelf life during the storage period. Chitosan coating reduced respiration activity, thus delaying ripening and the rate of decay due to senescence. The chitosan-coated banana samples had a better outcome on weight loss, ash content, pH, TSS, TA and disease severity values as compared to control samples. Banana coated with 1% chitosan showed less weight reduction and lessened obscuring than different treatments and control. Disease severity was astoundingly lessened by chitosan covering application. Chitosan coating extended banana up to the shelf life of more 2 to 4 days. From this investigation, it demonstrated that 1% chitosan was more appropriate in extending the shelf-life and better quality of banana during ripening and storage at ambient temperature.


Author(s):  
Malaka A. Saleh ◽  
Nagwa S. Zaied ◽  
M. A. Maksoud ◽  
Omaima M. Hafez

The present study was conducted during 2015 and 2016 seasons on Le Conte pear fruits harvested at mature stage, to investigate the application of (10% w/v) Arabic Gum (AG), Jojoba oil (JO) and Moringa oil (MO) at the rate (100 %) alone on physical and chemical properties. Fruits stored at 0 ± 1°C and 85-90 % relative humidity (RH) for 105 days. A fruit sample of each treatment was taken out at the end of cold storage period and left at room temperature (23 ± 2°C) and 47% (RH) up to 7 days was examined for quality Assessments. Fruit physical properties (weight loss, decay percentages and fruit firmness "Lb/inch2") and fruit chemical properties (total soluble solids percentage and total acidity percentage were evaluated. The results obtained that, all treatments including control succeeded in preventing fruit decay percentage up to 30 days in the two seasons. It is worth mentioning that, Le Conte pear fruits were coated with MO with stands free from deterioration up to 75 days of cold storage period. Beside, fruits coated MO progress in reducing the percentages of weight loss and decay throw cold storage periods for 105 day. The rate of softening increased in fruits with increasing the storage time in both fruits coated and uncoated, but it was significantly declined in uncoated treatments. Moreover, JO coating was more effective in firmness retention compared to the other treatments. Followed by pear fruits was coating with MO and AG in this respect. Furthermore, all coated fruits enhancement fruit quality during storage periods. Finally, it can be concluded that coating Le Conte fruits by Moringa oil recorded successfully reduction in fruit weight loss, decay percentages, improving fruit quality and extended storage fruit life as well as stimulate marketing period (shelf life), also safe on environmental and human health.


2003 ◽  
Vol 60 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Wagner Ferreira da Mota ◽  
Luiz Carlos Chamhum Salomão ◽  
Paulo Roberto Cecon ◽  
Fernando Luiz Finger

The high perishability of the yellow passion fruit (Passiflora edulis f. flavicarpa) reduces its postharvest conservation and availability, mainly for in natura consumption. These losses of quality and commercial value occur due to the high respiration and loss of water. This work aimed to evaluate the influence of a modified atmosphere - wax emulsions and plastic film - on the shelf life of the yellow passion fruit. Plastic film (Cryovac D-955, 15 mum thickness) reduced fresh weight loss and fruit wilting, kept higher fruit and rind weight and higher pulp osmotic potential over the storage period. However, it was not efficient in the control of rottenness. Sparcitrus wax (22-23% polyethylene/maleyc resin) caused injury to the fruit, high fruit weight losses and wilting and resulted in lower pulp osmotic potential; this wax lead to a higher concentration of acid and a lower relation of soluble solids/acidity. Among the tested waxes, Fruit Wax (18-21% carnauba wax) was the best, promoting reduced weight loss, wilting and rottenness.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Emmanuel M. Amwoka ◽  
Jane L. Ambuko ◽  
Hutchinson M. Jesang’ ◽  
Willis O. Owino

An on-farm study was conducted among smallholder mango farmers in Embu County of Kenya to demonstrate the effectiveness of simple harvest and postharvest handling practices to attain cold chain and extend mango shelf life. The recommended cold chain practices were compared with common farmers' practices. 'Apple', 'Ngowe', 'Kent', and 'Tommy Atkins' harvested at the mature green stage were used in the study. To demonstrate proper cold chain, fruits were harvested before 8 am, transported in crates lined with dampened newspapers, precooled in an evaporative charcoal cooler, and then transferred to a Coolbot™ cold room (10 ± 2°C). To demonstrate common farmers’ practices, fruits were harvested at noon, transported in open crates, and stored at ambient room conditions (25 ± 7°C, 55 ± 15%RH). The air and fruit pulp temperatures were monitored regularly using HUATO® data loggers. During the storage period, a random sample of 3 fruits (per variety) per treatment was taken after every 3 days to evaluate ripening related changes including physiological weight loss, colour, firmness, and total soluble solids. Proper cold chain practices resulted in low fruit pulp temperature (average 11°C) compared to 25°C for fruits handled using common practices by farmers leading to faster ripening as evidenced by lower peel/pulp colour and firmness, higher physiological weight loss, and higher total soluble solids. For example, flesh firmness of fruits under poor cold chain practices decreased from initial 36.6 N, 45.9 N, 66.5 N, and 46.8 N to 3.1 N, 2.4 N, 3.2 N, and 3.1 N for ‘Apple’, ‘Ngowe’, ‘Kent’, and ‘Tommy Atkins’ varieties, respectively, at the end of storage while that of fruits under proper cold chain practices reduced to 2.3 N, 1.5 N, 3.9 N, and 2.9 N, respectively, for the four varieties at the end of storage. Overall, proper cold chain management extended mango shelf life by 18 days. Application of simple harvest and handling practices coupled with simple storage technologies can attain and maintain the cold chain required to preserve quality and extend shelf life. This could increase the marketing and storage periods for later selling and processing, respectively, of mango fruits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Li ◽  
Sami Rokayya ◽  
Fuguo Jia ◽  
Xin Nie ◽  
Jingwen Xu ◽  
...  

AbstractChitosan coating (B/CH) in addition with nano-material films as silicon (B/CH/Nano-SiO2) and titanium (B/CH/Nano-TiO2) dioxides were developed and applied to detect potential changes on fresh blueberry fruits in commercial storage temperature. Physical, mechanical parameters (weight loss, decay rate, colour index and firmness), phytochemical contents (ascorbic acid, acidity, soluble solids concentration, titratable acidity, and repining index), phenolic enzymes (peroxidase and polyphenoloxidase), pigments (anthocyanin) and microbiological analysis (mesophilic aerobic, yeasts and molds populations) were detected every other day until the end of the experiment. Nano-coating based on (Nano-TiO2) established the most suitable values for weight loss (2.22%), titratable acidity (0.45% citric acid), and repining index. (B/CH/Nano-TiO2) reported a gradual increase in polyphenoloxidase and peroxidase enzyme activities (659.45 U/min g) and (20.39 U/min g), respectively. While, (B/CH/Nano-SiO2) established the slightest change in acidity (2.61), anthocyanin (105.19 cyanidin-3-O-glucoside mg/100 g FW) and minimized the growth of mesophilic aerobic, yeasts, and molds populations (3.73–3.98 log CFU/g), respectively. (B/CH) films maintained lightness (6.80% loss) and recorded the highest ascorbic acid content (7.34 g/100 g FW). Therefore, chitosan nano-material films can maintain nutrients and control the microbial growth for extending the shelf life of fresh blueberry fruits.


2019 ◽  
pp. 1-12
Author(s):  
Muharrem Ergun ◽  
Najat Ghareeb Kareem

Aims: The objectives of the present study were to evaluate effects of aqueous 1-methylcyclopropene (1-MCP) on quality of cucumber fruit, and to compare with/to gaseous 1-MCP and modified atmosphere packaging (MAP) applications. Study Design: A randomized complete block design (RCBD) was set up for the experiment. Place and Duration of Study: Department of Horticulture, Bingol University, Turkey; between September - December 2017.  Methodology: Cucumber fruits (ErdemliF1) were either treated with aqueous or gaseous 1-MCP (1 ppm), or left untreated for MAP storage or controls. The fruits were afterwards put into PET clamshell containers except for MAP application and stored 23 ± 1°C for 10 days for simulating retail shelf-life conditions. Samples of cucumbers were then tested periodically to record changes in quality as determined by weight loss, firmness, color, gas composition (O2, CO2 and N2), total soluble solids, pH, titratable acidity, chlorophyll content, and decay during the storage time. Results: Neither aqueous nor gaseous 1-MCP application had a significant effect on weight or firmness loss. According to peel color values recording during the storage period, there were no significant differences among the treatments. Total soluble solids, pH or titratable acidity did not show a significant change or variation among treatments during the storage. Fruits stored in modified atmosphere packages showed higher chlorophyll a amount than fruit treated with 1-MCP.   Conclusion: The study revealed that neither aqueous 1-MCP application nor gaseous 1-MCP application is effective for retaining quality loses and consequently for extending shelf life of the cucumbers kept at 23°C.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 603
Author(s):  
Ebtihal Khojah ◽  
Rokayya Sami ◽  
Mahmoud Helal ◽  
Abeer Elhakem ◽  
Nada Benajiba ◽  
...  

White button mushroom or (Agaricus bisporus) is known as a healthy foodstuff with several nutrients, polyphenols, proteins, and dietary fibers. Mushrooms have a short shelf-life, approximately three to four days at commercial storage and about eight days under chilling conditions. In the current study, titanium dioxide nanoparticles and chitosan films were used as novel active coating materials with the addition of thymol and tween (T and T) as food preservatives to prolong mushroom shelf life up to 12 days. Chitosan, Chitosan-Nano, and Chitosan-Nano/TT were used as coating materials, while water was used as control. Chitosan-Nano/TT film reported the lowest peroxidase activity (0.005 U kg−1 FW) and the highest superoxide dismutase activity (4.033 U kg−1 FW), while catalase activity in Chitosan-Nano film was (0.45 U kg−1 FW). Chitosan-Nano film enhanced the reactive oxygen species production levels, DPPH radicals (74.70%), and malondialdehyde content (1.68 µmol kg−1FW). Chitosan-Nano/TT film preserved the respiration rates (O2 consumption −0.026 mmol s−1kg−1, CO2 production −0.004 mg CO2 kg−1s−1) and increased the phenolic contents (0.38 g kg−1). The results suggested that nano-coating films can increase the oxidation processes which enhanced the quality of the mushrooms.


Food Biology ◽  
1970 ◽  
pp. 19-23
Author(s):  
Nawal Abdel-Gayoum Abdel-Rahman

The aim of this study is to use of karkede (Hibiscus sabdariffa L.) byproduct as raw material to make ketchup instead of tomato. Ketchup is making of various pulps, but the best type made from tomatoes. Roselle having adequate amounts of macro and micro elements, and it is rich in source of anthocyanine. The ketchup made from pulped of waste of soaked karkede, and homogenized with starch, salt, sugar, ginger (Zingiber officinale), kusbara (Coriandrum sativum) and gum Arabic. Then processed and filled in glass bottles and stored at two different temperatures, ambient and refrigeration. The total solids, total soluble solids, pH, ash, total titratable acidity and vitamin C of ketchup were determined. As well as, total sugars, reducing sugars, colour density, and sodium chloride percentage were evaluated. The sensory quality of developed product was determined immediately and after processing, which included colour, taste, odour, consistency and overall acceptability. The suitability during storage included microbial growth, physico-chemical properties and sensory quality. The karkede ketchup was found free of contaminants throughout storage period at both storage temperatures. Physico-chemical properties were found to be significantly differences at p?0.05 level during storage. There were no differences between karkade ketchup and market tomato ketchup concerning odour, taste, odour, consistency and overall acceptability. These results are encouraging for use of roselle cycle as a raw material to make acceptable karkade ketchup.


Sign in / Sign up

Export Citation Format

Share Document