Highly Sensitive Electrochemical Biosensor for Circulating Tumor Cells Detection via Dual-Aptamer Capture and Rolling Circle Amplification Strategy

2019 ◽  
Vol 15 (7) ◽  
pp. 1568-1577 ◽  
Author(s):  
Yang Wang ◽  
Kai Chang ◽  
Cheng Yang ◽  
Shujing Li ◽  
Lixin Wang ◽  
...  

A fast and simple strategy for early detection of circulating tumor cells (CTCs) is urgently required because of cancer metastasis. In this work, we assembled an electrochemical biosensor by two aptamers that could form hairpin and specifically recognize K562 cells. The thiolated capture aptamer was fixed on the gold electrode surface. The detection aptamer was linked with a primer at 3 end which could trigger rolling circle amplification to prolong the sequence of aptamer. The dual-aptamer model was fabricated to improve the capture specificity and efficiency for K562 cells. The rolling circle amplification improved the detection sensitivity by inhibiting electron transfer of [Fe(CN)6]3–/4– which could be measured by differential pulse voltammetry. The detection limit of 25 cells mL–1 and linear ranges of 1 × 10 2 to 1 × 105 cells mL–1 were obtained under optimal experimental conditions. Our work exhibited a label-free and simple method for detecting CTCs using cell-specific aptasensor, showing an expected possibility for further CTCs-related study and clinical applications of this novel method.

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 774 ◽  
Author(s):  
Jie Cheng ◽  
Yang Liu ◽  
Yang Zhao ◽  
Lina Zhang ◽  
Lingqian Zhang ◽  
...  

Circulating tumor cells (CTCs), a type of cancer cell that spreads from primary tumors into human peripheral blood and are considered as a new biomarker of cancer liquid biopsy. It provides the direction for understanding the biology of cancer metastasis and progression. Isolation and analysis of CTCs offer the possibility for early cancer detection and dynamic prognosis monitoring. The extremely low quantity and high heterogeneity of CTCs are the major challenges for the application of CTCs in liquid biopsy. There have been significant research endeavors to develop efficient and reliable approaches to CTC isolation and analysis in the past few decades. With the advancement of microfabrication and nanomaterials, a variety of approaches have now emerged for CTC isolation and analysis on microfluidic platforms combined with nanotechnology. These new approaches show advantages in terms of cell capture efficiency, purity, detection sensitivity and specificity. This review focuses on recent progress in the field of nanotechnology-assisted microfluidics for CTC isolation and detection. Firstly, CTC isolation approaches using nanomaterial-based microfluidic devices are summarized and discussed. The different strategies for CTC release from the devices are specifically outlined. In addition, existing nanotechnology-assisted methods for CTC downstream analysis are summarized. Some perspectives are discussed on the challenges of current methods for CTC studies and promising research directions.


2019 ◽  
Vol 55 (37) ◽  
pp. 5387-5390 ◽  
Author(s):  
Yuhong Lin ◽  
Lili Jiang ◽  
Yuqing Huang ◽  
Yuling Yang ◽  
Yu He ◽  
...  

Reversible isolation and release of circulating tumor cells based on DNA-responsive multivalent dual-aptamer-tethered rolling circle amplification network.


2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


Human Cell ◽  
2021 ◽  
Author(s):  
Yan Lu ◽  
Yushuang Zheng ◽  
Yuhong Wang ◽  
Dongmei Gu ◽  
Jun Zhang ◽  
...  

AbstractLung cancer is the most fetal malignancy due to the high rate of metastasis and recurrence after treatment. A considerable number of patients with early-stage lung cancer relapse due to overlooked distant metastasis. Circulating tumor cells (CTCs) are tumor cells in blood circulation that originated from primary or metastatic sites, and it has been shown that CTCs are critical for metastasis and prognosis in various type of cancers. Here, we employed novel method to capture, isolate and classify CTC with FlowCell system and analyzed the CTCs from a cohort of 302 individuals. Our results illustrated that FlowCell-enriched CTCs effectively differentiated benign and malignant lung tumor and the total CTC counts increased as the tumor developed. More importantly, we showed that CTCs displayed superior sensitivity and specificity to predict lung cancer metastasis in comparison to conventional circulating biomarkers. Taken together, our data suggested CTCs can be used to assist the diagnosis of lung cancer as well as predict lung cancer metastasis. These findings provide an alternative means to screen early-stage metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2723
Author(s):  
Yu-Ping Yang ◽  
Teresa M. Giret ◽  
Richard J. Cote

Circulating tumor cells (CTCs) have been recognized as a major contributor to distant metastasis. Their unique role as metastatic seeds renders them a potential marker in the circulation for early cancer diagnosis and prognosis as well as monitoring of therapeutic response. In the past decade, researchers mainly focused on the development of isolation techniques for improving the recovery rate and purity of CTCs. These developed techniques have significantly increased the detection sensitivity and enumeration accuracy of CTCs. Currently, significant efforts have been made toward comprehensive molecular characterization, ex vivo expansion of CTCs, and understanding the interactions between CTCs and their associated cells (e.g., immune cells and stromal cells) in the circulation. In this review, we briefly summarize existing CTC isolation technologies and specifically focus on advances in downstream analysis of CTCs and their potential applications in precision medicine. We also discuss the current challenges and future opportunities in their clinical utilization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thanyarat Chaibun ◽  
Jiratchaya Puenpa ◽  
Tatchanun Ngamdee ◽  
Nimaradee Boonapatcharoen ◽  
Pornpat Athamanolap ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.


2014 ◽  
Vol 50 (25) ◽  
pp. 3292-3295 ◽  
Author(s):  
Cheng-Yi Hong ◽  
Xian Chen ◽  
Juan Li ◽  
Jing-Hua Chen ◽  
Guonan Chen ◽  
...  

A simple method for direct detection of circulating miRNAs in serum by coupling p19 protein-facilitated specific enrichment and RCA.


Sign in / Sign up

Export Citation Format

Share Document