Molecular Mechanism of Neurotrophic Factor-Activated Long Non-Coding RNA Plasmacytoma Variant Translocation 1 Promoting Mesenchymal Stem Cell Migration and Repair of Fractures

2021 ◽  
Vol 11 (5) ◽  
pp. 943-947
Author(s):  
Linyu Yang ◽  
Haoping Dai ◽  
Jian Yang ◽  
Han Yang ◽  
Daoyin Yang ◽  
...  

It has been reported that neurotrophic factor (NF) promotes bone marrow mesenchymal stem cells (MSCs) migration to repair fractures. However, whether and how lncRNA PVT1 regulates differentiation induced by neurotrophic factors to promote MSC migration to repair fractures has not been explored. To explore the molecular mechanism of neurotrophic factor activating lncRNA PVT1 to promote MSC migration and repair fractures. Differential expression of neurotrophic factors stimulated by MSCs was analyzed based on microarray lncRNA and lncRNAs was further verified by qRT-PCR. The conditions of promoting MSC migration and osteogenic differentiation were identified by trans-fection of lncRNA PVT1 overexpressed plasmids and inhibitor and the targets of its regulation were confirmed by target gene prediction tools. In this study lncRNA array and qRT-PCR showed that lncRNA PVT1 was significantly down-regulated during neurotrophic factor-induced MSCs differentiation. Transfection of lncRNA PVT1 overexpression plasmid significantly inhibited the expression of osteogenic markers alkaline phosphatase (ALP) and osteopontin (OPN) in MSCs, while transfection of lncRNA PVT1 inhibitor promoted the expression of alkaline phosphatase (ALP) and osteopontin (OPN). lncRNA PVT1 is a negative regulator of MSCs differentiation induced by neurotrophic factors. The distal deletion homologous box 5(DLX5) was identified as the target of lncRNA PVT1 and the relationship between lncRNA PVT1 inhibiting the expression of DLX5 and the osteogenic differentiation of MSCs was verified in MSCs. lncRNA PVT1 negatively regulates the migration and differentiation of MSCs induced by neurotrophic factors by targeting DLX5, providing the foundation for bone repair.

2022 ◽  
Vol 12 (5) ◽  
pp. 958-963
Author(s):  
Fei Gao ◽  
Xiaoming Wu ◽  
Zhao Guo ◽  
Jianzhong Wang ◽  
Wenshan Gao ◽  
...  

This study explored whether teriparatide promotes BMSCs proliferation and differentiation via downregulating miR-298 and provided a basis for bone repair. Based on the microarray analysis after teriparatide treatment, qRT-PCR verified the differentially expressed miRNAs and the osteogenic differentiation was assessed by transfection of miRNA overexpression plasmids and miRNA inhibitors. miRNA array analysis and qRT-PCR verification showed that miR-298 was significantly downregulated during teriparatide-induced BMSCs differentiation. miR-298 overexpression significantly inhibited ALP and OPN expression which was promoted by transfection of miR-298 inhibitor. miR-298 is a negative regulator of BMSCs differentiation induced by teriparatide. Dlx5 is the target of miR-298. Inhibition of DLX5 expression by miR-298 was involved in the osteogenic differentiation of BMSCs. In conclusion, miR-298 negatively regulates the differentiation of BMSCs induced by teriparatide by targeting DLX5, providing a possible therapeutic target for bone tissue repair and regeneration.


2021 ◽  
Vol 11 (5) ◽  
pp. 957-962
Author(s):  
Ainiwaerjiang Damaola ◽  
Maerdan Aierken ◽  
Mieralimu Muertizha ◽  
Abudouaini Abudoureheman ◽  
Haishan Lin ◽  
...  

We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11251
Author(s):  
Zhaowei Teng ◽  
Yun Zhu ◽  
Qinggang Hao ◽  
Xiaochao Yu ◽  
Yirong Teng ◽  
...  

Background With aging, an imbalance in bone remodeling leading to increased bone resorption and decreased bone formation is thought to contribute to osteoporosis. Osteoblastic differentiation of bone marrow mesenchymal stem cells (BMMSCs) plays a vital role in the pathogenesis of osteoporosis. However, the detailed molecular mechanisms of osteoporosis remain incompletely understood. Given that long non-coding RNA taurine upregulated gene 1 (lnc TUG1) plays a critical role in the osteogenic differentiation, and microRNA-23b (miR-23b) as a putative sponge for lnc TUG1 has upregulated expression in osteoporosis. Therefore, this study investigated the roles of TUG1/miR-23b in osteoporotic pathology. Material and Methods TUG1 and miR-23b expression in the plasma of osteoporotic patients were evaluated by quantitative real-time PCR (qRT-PCR). The osteogenic differentiation in human BMMSCs was evaluated by qRT-PCR, western blot, Alizarin red staining after knockdown of TUG1 by small interfering RNA (siRNA) treatment. Results Decreased expression of TUG1 and increased expression of miR-23b evident in the plasma of patients with osteoporosis than in that of age- and sex-matched healthy controls. Additionally, increased miR-23b expression inhibited runt-related transcription factor 2 (RUNX2), osteocalcin, and osteopontin expression and reduced calcified nodule formation based on the results of qRT-PCR, western blot, and Alizarin Red S staining. Conclusion The study for the first time reported that silence of lncRNA TUG1 significantly suppressed the osteogenic differentiation of BMMSCs possibly by targeting the miR-23b/RUNX2 signaling pathway. This mechanism of TUG1/miR-23b/RUNX2 signaling within the osteogenic differentiation of BMMSCs might provide new insight for the development of lncRNA-directed diagnostic and therapeutic strategies for osteoporosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chao Xia ◽  
Tianyuan Jiang ◽  
Yonghui Wang ◽  
Xiaoting Chen ◽  
Yan Hu ◽  
...  

The osteogenic differentiation capacity of senescent bone marrow mesenchymal stem cells (MSCs) is reduced. p53 not only regulates cellular senescence but also functions as a negative regulator in bone formation. However, the role of p53 in MSCs senescence and differentiation has not been extensively explored. In the present study, we investigated the molecular mechanism of p53 in MSCs senescence and osteogenic differentiation. We found that p53 was upregulated during cellular senescence and osteogenic differentiation of MSCs respectively induced by H2O2 and BMP9. Similarly, the expression of p53-induced miR-145a was increased significantly. Furthermore, Overexpression of miR-145a in MSCs promoted cellular senescence and inhibited osteogenic differentiation. Then, we identified that p53-induced miR-145a inhibited osteogenic differentiation by targeting core binding factor beta (Cbfb), and the restoration of Cbfb expression rescued the inhibitory effects of miRNA-145a. In summary, our results indicate that p53/miR-145a axis exert its functions both in promoting senescence and inhibiting osteogenesis of MSCs, and the novel p53/miR-145a/Cbfb axis in osteogenic differentiation of MSCs may represent new targets in the treatment of osteoporosis.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yuli Wang ◽  
Fei Jiang ◽  
Yi Liang ◽  
Ming Shen ◽  
Ning Chen

Human amnion-derived mesenchymal stem cells (HAMSCs) are considered to be an important resource in the field of tissue engineering because of their anti-inflammatory properties and fewer ethical issues associated with their use compared with other sources of stem cells. HAMSCs can be obtained from human amniotic membranes, a readily available and abundant tissue. However, the potential of HAMSCs as seed cells for treating bone deficiency is unknown. In this study, HAMSCs were used to promote proliferation and osteoblastic differentiation in human bone marrow mesenchymal stem cells (HBMSCs) in a Transwell coculture system. Proliferation levels were investigated by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were evaluated in chromogenic alkaline phosphatase (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of early HBMSCs osteogenic marker expression. We demonstrated that HAMSCs stimulated increased alkaline phosphatase (ALP) activity, mRNA expression of osteogenic marker genes, and mineralized matrix deposition. Moreover, the effect of HAMSCs was significantly inhibited by U0126, a highly selective inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2) signaling. We demonstrate that HAMSCs promote osteogenic differentiation in HBMSCs by influencing the ERK1/2 signaling pathway. These observations confirm the potential of HAMSCs as a seed cell for the treatment of bone deficiency.


2021 ◽  
Author(s):  
Yifan Yang ◽  
Jing Xu ◽  
Qingxin Su ◽  
Yiran Wu ◽  
Qizheng Li ◽  
...  

Abstract BackgroundIdiopathic scoliosis (IS) is the most common structural scoliosis, which seriously affects not only patient’s physical and mental health but also quality of patient’s life. Abnormal osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is one of the causes of IS. However, the regulation mechanism of osteogenic differentiation of BMSCs in patients with IS remains to be further studied.MethodsSerum samples of 135 patients with IS were collected, and the expression of miRNA were detected by RT-qPCR. BMSCs from patients with IS were collected and the expression of miR-192-5p in BMSCs from IS patients and normal BMSCs was detected by RT-qPCR. Double luciferase reporter genes assay was used to verify the targeting relationship between miR-192-5p and RSPO1. The levels of RSPO1, osteogenic related proteins (OC, OPN and RUNX2) and Wnt/β-catenin signaling pathway related proteins (WNT3A and β-catenin) were detected by Western blotting. Alkaline phosphatase staining and alizarin red staining were used to evaluate the osteogenesis of BMSCs.ResultsmiR-192-5p was significantly up-regulated in serum and BMSCs of patients with IS. Alkaline phosphatase staining and alizarin red staining showed that miR-192-5p inhibitor promoted the osteogenic differentiation of BMSCs from IS patients. miR-192-5p targeted down-regulated the expression of RSPO1 in BMSCs from IS patients. In addition, overexpression of RSPO1 activated Wnt/β-catenin signaling pathway in BMSCs from IS patients. Furthermore, miR-192-5p/RSPO1 axis regulated levels of osteogenic related proteins (OC, OPN and RUNX2) in BMSCs from IS patients through Wnt/β-catenin signaling pathway, and affected the osteogenic differentiation of BMSCs.ConclusionmiR-192-5p, which was highly expressed in patients with IS, inhibited Wnt/β-catenin signaling pathway by down-regulating RSPO1 protein and then reduced the osteogenic differentiation ability of BMSCs.


Author(s):  
Shanshan Xin ◽  
Shao-Ming Li ◽  
Ling Gao ◽  
Jing-Jing Zheng ◽  
Yan-Wei Wu ◽  
...  

Background: Periodontitis is a chronic and progressive disease accompanied by bone loss. It is still a challenge to restore the bone structure. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a decisive role in bone restoration and regeneration. Marine natural products (MNPs) have multiple biological activities, including anti-tumor and anti-inflammatory properties. However, the exploration of MNPs in osteogenesis is far from sufficient.Methods: We obtained a series of derivatives through structural optimization from 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloid isolated from Scopulariopsis sp. Some preliminary cytological experiments showed that CHNQD-00603, obtained by adding a methoxy group to the position C3 and a hydroxyl group to the position C4 of 4-phenyl-3,4-dihydroquinolin-2(1H)-one, might promote the osteogenic differentiation of BMSCs. To further investigate the effects of CHNQD-00603 on BMSCs, we performed a CCK-8 assay and qRT-PCR, alkaline phosphatase staining (ALP), and alizarin red S staining to assess the cytotoxicity and the ability of osteogenic differentiation of CHNQD-00603. The autophagy level was assessed and validated by WB, qRT-PCR, and transmission electron microscopy. Then, 3-methyladenine (3-MA) was added to further examine the role of autophagy. Based on the expression of autophagy-related genes, we predicted and examined the potential miRNAs by bioinformatics.Results: CCK-8 assay showed that CHNQD-00603 at 1 µg/ml did not influence BMSCs activity. However, the proliferation rate decreased from the seventh day. qRT-PCR, ALP staining, ALP activity assay, and Alizarin red S staining showed that the best concentration of CHNQD-00603 to promote osteogenic differentiation was 1 µg/ml. Further investigations indicated that CHNQD-00603 activated autophagy, and the inhibition of autophagy by 3-MA attenuated CHNQD-00603-enhanced osteogenic differentiation. Subsequently, the findings from bioinformatics and qRT-PCR indicated that miR-452-3p might be a regulator of autophagy and osteogenesis. Furthermore, we transfected BMSCs with miR-452-3p NC and mimics separately to further determine the function of miR-452-3p. The data showed that the overexpression of miR-452-3p moderated the level of autophagy and osteogenic differentiation of CHNQD-00603-treated BMSCs.Conclusion: Our data suggested that CHNQD-00603 promoted the osteogenic differentiation of BMSCs by enhancing autophagy. Meanwhile, miR-452-3p played a regulatory role in this process.


2020 ◽  
Author(s):  
Zhi Peng ◽  
Zhenkai Lou ◽  
Zhongjie Li ◽  
Shaobo Li ◽  
Kaishun Yang ◽  
...  

Abstract Background: Osteoporosis is the most common bone metabolic disease. Emerging evidence suggests that exosomes are secreted by diverse cells such as bone marrow mesenchymal stem cells (BMSCs), and play important role in cell-to-cell communication and tissue homeostasis. Recently, the discovery of exosomes has attracted attention in the field of bone remodeling. Methods: The exosomes were extracted from BMSCs and labeled by PKH-67, and then incubated with hFOB1.19 cells to investigate the miR-196a function on the osteoblast differentiation of hFOB1.19. The osteoblast differentiation was detected via alizarin red staining and the expression of osteoblast genes were detected by western blot. The cell apoptosis was detected by flow cytometer. The target relationship of miR-196a and Dickkopf-1 (Dkk1) were verified by luciferase assay and western blot. Results: Here we demonstrated that exosomes extracted from BMSCs (BMSC-exo) significantly promoted hFOB1.19 differentiation to osteoblasts. We found that BMSC-exo were enriched with miR-196a and delivered miR-196a to hFOB1.19 cells to inhibit its target Dkk1, which is a negative regulator of Wnt/β-catenin pathway. Conclusion: BMSC-exo activated Wnt/β-catenin pathway to promote osteogenic differentiation, while BMSC-exo failed to exert the effects when miR-196a was deprived. In conclusion, miR-196a delivered by exosomes from BMSCs plays an essential role in enhancing osteoblastic differentiation by targeting Dkk1 to activate Wnt/β-catenin pathway.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3221 ◽  
Author(s):  
Sung-Yen Lin ◽  
Lin Kang ◽  
Chau-Zen Wang ◽  
Han Huang ◽  
Tsung-Lin Cheng ◽  
...  

Osteoporosis is the second most-prevalent epidemiologic disease in the aging population worldwide. Cross-sectional and retrospective evidence indicates that tea consumption can mitigate bone loss and reduce risk of osteoporotic fractures. Tea polyphenols enhance osteoblastogenesis and suppress osteoclastogenesis in vitro. Previously, we showed that (−)-epigallocatechin-3-gallate (EGCG), one of the green tea polyphenols, increased osteogenic differentiation of murine bone marrow mesenchymal stem cells (BMSCs) by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and, eventually, mineralization. We also found that EGCG could mitigate bone loss and improve bone microarchitecture in ovariectomy-induced osteopenic rats, as well as enhancing bone defect healing partially via bone morphogenetic protein 2 (BMP2). The present study investigated the effects of EGCG in human BMSCs. We found that EGCG, at concentrations of both 1 and 10 µmol/L, can increase mRNA expression of BMP2, Runx2, alkaline phosphatase (ALP), osteonectin and osteocalcin 48 h after treatment. EGCG increased ALP activity both 7 and 14 days after treatment. Furthermore, EGCG can also enhance mineralization two weeks after treatment. EGCG without antioxidants also can enhance mineralization. In conclusion, EGCG can increase mRNA expression of BMP2 and subsequent osteogenic-related genes including Runx2, ALP, osteonectin and osteocalcin. EGCG further increased ALP activity and mineralization. Loss of antioxidant activity can still enhance mineralization of human BMSCs (hBMSCs).


2021 ◽  
Author(s):  
Zijie Zhang ◽  
Qin He ◽  
Xiaolu Zhao ◽  
Xiaoyu Li ◽  
Fulan Wei

Abstract Background: Periodontal ligament stem cells (PDLSCs) are important for the remodeling of the alveolar bone while tooth moving. However, the effect of long non-coding RNA (lncRNA) on osteogenic differentiation of PDLSCs under mechanical force remains unclear.Methods: In this study, we compared stretched and non-stretched PDLSCs by high-throughput sequencing. The verification and selection of lncRNAs were achieved by quantitative reverse transcription polymerase chain reaction (qRT-PCR). PDLSCs osteogenic differentiation potentials were assessed by alkaline phosphatase (ALP) staining, Alizarin Red staining, qRT-PCR, and western blot. The application of mechanical force used Flexcell-FX-6000-Tension System in vitro, and constructing rats’ tooth movement model in vivo. To verify the osteogenic regulation ability of small nucleolar RNA host gene 8 (SNHG8), PDLSCs were stretched or applied osteogenic induction after been infected by lentivirus. RNA fluorescence in situ hybridization, isolation of nuclear and cytoplasmic RNA, qRT-PCR and western blot were performed to locate SNHG8. Western blot and qRT-PCR to find the relationship between enhancer of zeste homolog 2 (EZH2) and SNHG8.Results: Our results demonstrated that among lncRNAs altered screened by high-throughput sequencing, the expression level of SNHG8 steadily decreased after being stretched. Analysis of mRNA expression and protein levels revealed an upregulation of ALP and RUNX2, ALP and Alizarin Red staining showed more obvious alkaline phosphatase and more mineralized nodules in SNHG8 knockdown PDLSCs. In vivo experiments showed lower expression of the homologous gene of SNHG8 after tooth movement, and better ability of ectopic osteogenesis after knockdown SNHG8. The verification of SNHG8’s nuclear location led us to infer that SNHG8 may interact with EZH2. The qRT-PCR and western blot results disclosed EZH2 expression reduced along with the knockdown of SNHG8. Furthermore, knockdown of EZH2 lead to PDLSCs’ osteogenic differentiation ability increasing under osteogenic induction according to the mRNA level of ALP and RUNX2 accompanied by ALP and Alizarin Red staining results.Conclusion: In general, our study confirmed that mechanically sensitive lncRNA SNHG8 can influence the osteogenic differentiation of PDLSCs through epigenetic pathways without directly encoding protein, which provides solid evidence for the regulation by non-coding genes.


Sign in / Sign up

Export Citation Format

Share Document