Teriparatide Promotes Bone Marrow Mesenchymal Stem Cells (BMSCs) Proliferation and Differentiation via Down-Regulating miR-298

2022 ◽  
Vol 12 (5) ◽  
pp. 958-963
Author(s):  
Fei Gao ◽  
Xiaoming Wu ◽  
Zhao Guo ◽  
Jianzhong Wang ◽  
Wenshan Gao ◽  
...  

This study explored whether teriparatide promotes BMSCs proliferation and differentiation via downregulating miR-298 and provided a basis for bone repair. Based on the microarray analysis after teriparatide treatment, qRT-PCR verified the differentially expressed miRNAs and the osteogenic differentiation was assessed by transfection of miRNA overexpression plasmids and miRNA inhibitors. miRNA array analysis and qRT-PCR verification showed that miR-298 was significantly downregulated during teriparatide-induced BMSCs differentiation. miR-298 overexpression significantly inhibited ALP and OPN expression which was promoted by transfection of miR-298 inhibitor. miR-298 is a negative regulator of BMSCs differentiation induced by teriparatide. Dlx5 is the target of miR-298. Inhibition of DLX5 expression by miR-298 was involved in the osteogenic differentiation of BMSCs. In conclusion, miR-298 negatively regulates the differentiation of BMSCs induced by teriparatide by targeting DLX5, providing a possible therapeutic target for bone tissue repair and regeneration.

2021 ◽  
Vol 11 (5) ◽  
pp. 943-947
Author(s):  
Linyu Yang ◽  
Haoping Dai ◽  
Jian Yang ◽  
Han Yang ◽  
Daoyin Yang ◽  
...  

It has been reported that neurotrophic factor (NF) promotes bone marrow mesenchymal stem cells (MSCs) migration to repair fractures. However, whether and how lncRNA PVT1 regulates differentiation induced by neurotrophic factors to promote MSC migration to repair fractures has not been explored. To explore the molecular mechanism of neurotrophic factor activating lncRNA PVT1 to promote MSC migration and repair fractures. Differential expression of neurotrophic factors stimulated by MSCs was analyzed based on microarray lncRNA and lncRNAs was further verified by qRT-PCR. The conditions of promoting MSC migration and osteogenic differentiation were identified by trans-fection of lncRNA PVT1 overexpressed plasmids and inhibitor and the targets of its regulation were confirmed by target gene prediction tools. In this study lncRNA array and qRT-PCR showed that lncRNA PVT1 was significantly down-regulated during neurotrophic factor-induced MSCs differentiation. Transfection of lncRNA PVT1 overexpression plasmid significantly inhibited the expression of osteogenic markers alkaline phosphatase (ALP) and osteopontin (OPN) in MSCs, while transfection of lncRNA PVT1 inhibitor promoted the expression of alkaline phosphatase (ALP) and osteopontin (OPN). lncRNA PVT1 is a negative regulator of MSCs differentiation induced by neurotrophic factors. The distal deletion homologous box 5(DLX5) was identified as the target of lncRNA PVT1 and the relationship between lncRNA PVT1 inhibiting the expression of DLX5 and the osteogenic differentiation of MSCs was verified in MSCs. lncRNA PVT1 negatively regulates the migration and differentiation of MSCs induced by neurotrophic factors by targeting DLX5, providing the foundation for bone repair.


2021 ◽  
Vol 11 (5) ◽  
pp. 957-962
Author(s):  
Ainiwaerjiang Damaola ◽  
Maerdan Aierken ◽  
Mieralimu Muertizha ◽  
Abudouaini Abudoureheman ◽  
Haishan Lin ◽  
...  

We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Guanghua Chen ◽  
Guizhi Huang ◽  
Han Lin ◽  
Xinyou Wu ◽  
Xiaoyan Tan ◽  
...  

Abstract Background Studies have shown that the decrease of osteogenic differentiation of bone marrow mesenchymal stem cells (MSC) is an important mechanism of osteoporosis. The object of this study was to explore the role and mechanism of microRNA miR-425-5p in the differentiation of MSC. Methods The expression of miR-425-5p in MSC was detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell proliferation, cell cycle and apoptosis were detected by CCK-8 colorimetry and flow cytometry. The expression of TNF were detected by ELISA. Results Our data show that MiR-425-5p could modulate TNF-induced cell apoptosis, proliferation, and differentiation. ANXA2 is also the target of miR-425-5p and ANXA2 was involved in TNF-induced MSC cell apoptosis, proliferation, and differentiation. In addition, MiR-425-5p enhanced osteoporosis in mice. Conclusion MiR-425-5p might serve as a potential therapeutic target for the treatment of osteoporosis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11251
Author(s):  
Zhaowei Teng ◽  
Yun Zhu ◽  
Qinggang Hao ◽  
Xiaochao Yu ◽  
Yirong Teng ◽  
...  

Background With aging, an imbalance in bone remodeling leading to increased bone resorption and decreased bone formation is thought to contribute to osteoporosis. Osteoblastic differentiation of bone marrow mesenchymal stem cells (BMMSCs) plays a vital role in the pathogenesis of osteoporosis. However, the detailed molecular mechanisms of osteoporosis remain incompletely understood. Given that long non-coding RNA taurine upregulated gene 1 (lnc TUG1) plays a critical role in the osteogenic differentiation, and microRNA-23b (miR-23b) as a putative sponge for lnc TUG1 has upregulated expression in osteoporosis. Therefore, this study investigated the roles of TUG1/miR-23b in osteoporotic pathology. Material and Methods TUG1 and miR-23b expression in the plasma of osteoporotic patients were evaluated by quantitative real-time PCR (qRT-PCR). The osteogenic differentiation in human BMMSCs was evaluated by qRT-PCR, western blot, Alizarin red staining after knockdown of TUG1 by small interfering RNA (siRNA) treatment. Results Decreased expression of TUG1 and increased expression of miR-23b evident in the plasma of patients with osteoporosis than in that of age- and sex-matched healthy controls. Additionally, increased miR-23b expression inhibited runt-related transcription factor 2 (RUNX2), osteocalcin, and osteopontin expression and reduced calcified nodule formation based on the results of qRT-PCR, western blot, and Alizarin Red S staining. Conclusion The study for the first time reported that silence of lncRNA TUG1 significantly suppressed the osteogenic differentiation of BMMSCs possibly by targeting the miR-23b/RUNX2 signaling pathway. This mechanism of TUG1/miR-23b/RUNX2 signaling within the osteogenic differentiation of BMMSCs might provide new insight for the development of lncRNA-directed diagnostic and therapeutic strategies for osteoporosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chao Xia ◽  
Tianyuan Jiang ◽  
Yonghui Wang ◽  
Xiaoting Chen ◽  
Yan Hu ◽  
...  

The osteogenic differentiation capacity of senescent bone marrow mesenchymal stem cells (MSCs) is reduced. p53 not only regulates cellular senescence but also functions as a negative regulator in bone formation. However, the role of p53 in MSCs senescence and differentiation has not been extensively explored. In the present study, we investigated the molecular mechanism of p53 in MSCs senescence and osteogenic differentiation. We found that p53 was upregulated during cellular senescence and osteogenic differentiation of MSCs respectively induced by H2O2 and BMP9. Similarly, the expression of p53-induced miR-145a was increased significantly. Furthermore, Overexpression of miR-145a in MSCs promoted cellular senescence and inhibited osteogenic differentiation. Then, we identified that p53-induced miR-145a inhibited osteogenic differentiation by targeting core binding factor beta (Cbfb), and the restoration of Cbfb expression rescued the inhibitory effects of miRNA-145a. In summary, our results indicate that p53/miR-145a axis exert its functions both in promoting senescence and inhibiting osteogenesis of MSCs, and the novel p53/miR-145a/Cbfb axis in osteogenic differentiation of MSCs may represent new targets in the treatment of osteoporosis.


Author(s):  
Shanshan Xin ◽  
Shao-Ming Li ◽  
Ling Gao ◽  
Jing-Jing Zheng ◽  
Yan-Wei Wu ◽  
...  

Background: Periodontitis is a chronic and progressive disease accompanied by bone loss. It is still a challenge to restore the bone structure. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a decisive role in bone restoration and regeneration. Marine natural products (MNPs) have multiple biological activities, including anti-tumor and anti-inflammatory properties. However, the exploration of MNPs in osteogenesis is far from sufficient.Methods: We obtained a series of derivatives through structural optimization from 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloid isolated from Scopulariopsis sp. Some preliminary cytological experiments showed that CHNQD-00603, obtained by adding a methoxy group to the position C3 and a hydroxyl group to the position C4 of 4-phenyl-3,4-dihydroquinolin-2(1H)-one, might promote the osteogenic differentiation of BMSCs. To further investigate the effects of CHNQD-00603 on BMSCs, we performed a CCK-8 assay and qRT-PCR, alkaline phosphatase staining (ALP), and alizarin red S staining to assess the cytotoxicity and the ability of osteogenic differentiation of CHNQD-00603. The autophagy level was assessed and validated by WB, qRT-PCR, and transmission electron microscopy. Then, 3-methyladenine (3-MA) was added to further examine the role of autophagy. Based on the expression of autophagy-related genes, we predicted and examined the potential miRNAs by bioinformatics.Results: CCK-8 assay showed that CHNQD-00603 at 1 µg/ml did not influence BMSCs activity. However, the proliferation rate decreased from the seventh day. qRT-PCR, ALP staining, ALP activity assay, and Alizarin red S staining showed that the best concentration of CHNQD-00603 to promote osteogenic differentiation was 1 µg/ml. Further investigations indicated that CHNQD-00603 activated autophagy, and the inhibition of autophagy by 3-MA attenuated CHNQD-00603-enhanced osteogenic differentiation. Subsequently, the findings from bioinformatics and qRT-PCR indicated that miR-452-3p might be a regulator of autophagy and osteogenesis. Furthermore, we transfected BMSCs with miR-452-3p NC and mimics separately to further determine the function of miR-452-3p. The data showed that the overexpression of miR-452-3p moderated the level of autophagy and osteogenic differentiation of CHNQD-00603-treated BMSCs.Conclusion: Our data suggested that CHNQD-00603 promoted the osteogenic differentiation of BMSCs by enhancing autophagy. Meanwhile, miR-452-3p played a regulatory role in this process.


2020 ◽  
Author(s):  
Zhi Peng ◽  
Zhenkai Lou ◽  
Zhongjie Li ◽  
Shaobo Li ◽  
Kaishun Yang ◽  
...  

Abstract Background: Osteoporosis is the most common bone metabolic disease. Emerging evidence suggests that exosomes are secreted by diverse cells such as bone marrow mesenchymal stem cells (BMSCs), and play important role in cell-to-cell communication and tissue homeostasis. Recently, the discovery of exosomes has attracted attention in the field of bone remodeling. Methods: The exosomes were extracted from BMSCs and labeled by PKH-67, and then incubated with hFOB1.19 cells to investigate the miR-196a function on the osteoblast differentiation of hFOB1.19. The osteoblast differentiation was detected via alizarin red staining and the expression of osteoblast genes were detected by western blot. The cell apoptosis was detected by flow cytometer. The target relationship of miR-196a and Dickkopf-1 (Dkk1) were verified by luciferase assay and western blot. Results: Here we demonstrated that exosomes extracted from BMSCs (BMSC-exo) significantly promoted hFOB1.19 differentiation to osteoblasts. We found that BMSC-exo were enriched with miR-196a and delivered miR-196a to hFOB1.19 cells to inhibit its target Dkk1, which is a negative regulator of Wnt/β-catenin pathway. Conclusion: BMSC-exo activated Wnt/β-catenin pathway to promote osteogenic differentiation, while BMSC-exo failed to exert the effects when miR-196a was deprived. In conclusion, miR-196a delivered by exosomes from BMSCs plays an essential role in enhancing osteoblastic differentiation by targeting Dkk1 to activate Wnt/β-catenin pathway.


2019 ◽  
Vol 9 (6) ◽  
pp. 816-821
Author(s):  
Jiankun Liu ◽  
Qiangsong Wang ◽  
Guiming Sun ◽  
Qiang Yang

Osteoporosis (OP) is a metabolic bone disease which is characterized as loss of bone mineral content, decreased bone density, bone microstructural destruction, and reduced bone biomechanical evaluation index. Proliferation and differentiation of bone marrow mesenchymal stem cells (MSCs) is important for the treatment of OP. It is proposed that down-regulation of miR-339 can target DLX to promote the proliferation and differentiation of MSCs. However, whether teriparatide promotes osteogenic differentiation through this pathway remains unclear. MSCs were isolated from 4–6 week-old Wister rats. The effect of teriparatide on cell proliferation was evaluated by tetrazolium salt colorimetric method (MTT) and BrdU staining. Cell differentiation was measured by alkaline phosphatase staining. miR-339 expression was detected by real-time quantitative PCR (qRT-PCR). DLX5 expression was detected by Western-blot. It was found that teriparatide can promote the proliferation and differentiation of MSCs. MiR-339 level was significantly decreased and DLX5 expression was significantly upregulated after teriparatide treatment. After knocking down miR-339, teriparatide-induced upregulation of DLX5 by was attenuated. Teriparatide promotes the proliferation and differentiation of MSCs by down-regulating miR-339 to improve osteoporosis. It provides theoretical and experimental basis for the treatment of osteoporosis by teriparatide.


2006 ◽  
Vol 309-311 ◽  
pp. 1383-1386
Author(s):  
Hajime Ohgushi ◽  
Hiroko Machida ◽  
Akira Oshima ◽  
Noriko Kotobuki ◽  
Motohiro Hirose ◽  
...  

After culture expansion of mesenchymal stem cells (MSCs) from a few milliliter of fresh patient’s bone marrow, we applied the MSCs on alumina ceramic ankle prosthesis and further cultured in an osteogenic medium for 2 weeks. After the culture, the MSCs differentiated into osteoblasts, which fabricated bone matrix on the surface of ceramic prosthesis. The expansion of MSCs followed by osteogenic differentiation was done using the commercially available medium with some chemicals and patient’s own serum. The MSCs well proliferated and differentiated into osteoblasts, even the MSCs were from old aged (more than 70 years old) patients. The tissue engineered ceramic prostheses were implanted into osteoarthritic patients. Typical X-ray findings showed that radiodense areas began to appear around the cell-seeded areas on the prosthesis about 2 to 3 months after the operation. These findings confirmed the importance of tissue engineering approach for early bone fixation and the approach can be done using small number of bone marrow cells and patient’s own serum without adding animal-derived products.


Sign in / Sign up

Export Citation Format

Share Document