Effect of Curcumin on Alterations of Alveolar Bone Remodeling and Expression of Receptor Activator of Nuclear Factor-κ B Ligand in Rat Tooth During Tooth Movement

2021 ◽  
Vol 11 (10) ◽  
pp. 2058-2063
Author(s):  
Yang An ◽  
Zhenqiang Li ◽  
Li An ◽  
Qingmei Liu

Objective: To evaluate the effect of Curcumin on Alterations of Alveolar Bone Remodeling and Expression of RANKL in Rat Tooth during Tooth Movement. Methods: 64 SD rats were randomly divided into 4 groups, Model, Adrb2, Cur and Cur + Pro groups. The rat orthodontic teeth movement models were established.The rats were injected corresponding reagents according to weight and were sacrificed on day 0, 7, 14 and 21. The movement distance of first molar of rats was measured by Vernier caliper.The numbers of osteoclasts were observed through TRAP staining. The change of micro-structure of alveolar bone was evaluated by Micro-CT. Results: The trends of the distance of teeth movement and numbers of osteoclast were the same: Cur group β Adrb2 group > Model groups Cur+Pro group (P < 0.05). Micro-CT scan showed that curcumin could reduce the bone volume fraction (BV/TV), bone trabecular density (MTPD), and increase the trabecular resolution (TB. SP). When propranolol was given at the same time, the effect of curcumin disappeared. Conclusion: Curcumin could promote the resorption of alveolar bone at the pressure side and increase the osteoclast numbers so that the alveolar bone became looser which was beneficial to the movement of orthodontic tooth.

2013 ◽  
Vol 84 (2) ◽  
pp. 297-303 ◽  
Author(s):  
Zana Kalajzic ◽  
Elizabeth Blake Peluso ◽  
Achint Utreja ◽  
Nathaniel Dyment ◽  
Jun Nihara ◽  
...  

ABSTRACT Objective: To investigate the effect of externally applied cyclical (vibratory) forces on the rate of tooth movement, the structural integrity of the periodontal ligament, and alveolar bone remodeling. Methods: Twenty-six female Sprague-Dawley rats (7 weeks old) were divided into four groups: CTRL (unloaded), VBO (molars receiving a vibratory stimulus only), TMO (molars receiving an orthodontic spring only), and TMO+VB (molars receiving an orthodontic spring and the additional vibratory stimulus). In TMO and TMO+VB groups, the rat first molars were moved mesially for 2 weeks using Nickel-Titanium coil spring delivering 25 g of force. In VBO and TMO+VB groups, cyclical forces at 0.4 N and 30 Hz were applied occlusally twice a week for 10 minutes. Microfocus X-ray computed tomography analysis and tooth movement measurements were performed on the dissected rat maxillae. Tartrate-resistant acid phosphatase staining and collagen fiber assessment were performed on histological sections. Results: Cyclical forces significantly inhibited the amount of tooth movement. Histological analysis showed marked disorganization of the collagen fibril structure of the periodontal ligament during tooth movement. Tooth movement caused a significant increase in osteoclast parameters on the compression side of alveolar bone and a significant decrease in bone volume fraction in the molar region compared to controls. Conclusions: Tooth movement was significantly inhibited by application of cyclical forces.


2018 ◽  
Vol 88 (5) ◽  
pp. 632-637 ◽  
Author(s):  
Kriangkrai Kraiwattanapong ◽  
Bancha Samruajbenjakun

ABSTRACT Objectives: To investigate the effects of light and heavy forces with corticotomy on tooth movement rate, alveolar bone response, and root resorption in a rat model. Materials and Methods: The right and left sides of 40 male Wistar rats were randomly assigned using the split-mouth design to two groups: light force with corticotomy (LF) and heavy force with corticotomy (HF). Tooth movement was performed on the maxillary first molars using a nickel-titanium closed-coil spring delivering either 10 g (light force) or 50 g (heavy force). Tooth movement and alveolar bone response were assessed by micro–computed tomography (micro-CT) at day 0 as the baseline and on days 7, 14, 21, and 28. Root resorption was examined by histomorphometric analysis at day 28. Results: Micro-CT analysis showed a significantly greater tooth movement in the HF group at days 7 and 14 but no difference in bone volume fraction at any of the observed periods. Histomorphometric analysis found no significant difference in root resorption between the LF and HF groups at day 28. Conclusions: Heavy force with corticotomy increased tooth movement at days 7 and 14 but did not show any difference in alveolar bone change or root resorption.


2021 ◽  
pp. 002203452110199
Author(s):  
Y. Xie ◽  
Q. Tang ◽  
S. Yu ◽  
W. Zheng ◽  
G. Chen ◽  
...  

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs) sensing biomechanical stimuli and subsequently releasing signals to initiate alveolar bone remodeling. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities are still unclear. This study demonstrates that the core circadian protein aryl hydrocarbon receptor nuclear translocator–like protein 1 (BMAL1) in PDLCs is highly involved in sensing and delivering biomechanical signals. Orthodontic force upregulates BMAL1 expression in periodontal tissues and cultured PDLCs in manners dependent on ERK (extracellular signal–regulated kinase) and AP1 (activator protein 1). Increased BMAL1 expression can enhance secretion of CCL2 (C-C motif chemokine 2) and RANKL (receptor activator of nuclear factor–κB ligand) in PDLCs, which subsequently promotes the recruitment of monocytes that differentiate into osteoclasts. The mechanistic delineation clarifies that AP1 induced by orthodontic force can directly interact with the BMAL1 promoter and activate gene transcription in PDLCs. Localized administration of the ERK phosphorylation inhibitor U0126 or the BMAL1 inhibitor GSK4112 suppressed ERK/AP1/BMAL1 signaling. These treatments dramatically reduced osteoclastic activity in the compression side of a rat orthodontic model, and the OTM rate was almost nonexistent. In summary, our results suggest that force-induced expression of BMAL1 in PDLCs is closely involved in controlling osteoclastic activities during OTM and plays a vital role in alveolar bone remodeling. It could be a useful therapeutic target for accelerating the OTM rate and controlling pathologic bone-remodeling activities.


1994 ◽  
Vol 266 (5) ◽  
pp. E731-E738 ◽  
Author(s):  
C. Dolce ◽  
J. Anguita ◽  
L. Brinkley ◽  
P. Karnam ◽  
M. Humphreys-Beher ◽  
...  

Effects on bone remodeling have been attributed to epidermal growth factor (EGF). Sialoadenectomy (SX) removes the major source of EGF in rodents and decreases both salivary and serum EGF levels. EGF effects on rat alveolar bone remodeling manifested by molar drift (MD) and orthodontic tooth movement (OTM) were examined using the following two approaches: 1) EGF depletion by SX and replacement by orally administered EGF (50 micrograms.animal-1.day-1); 2) sham rats supplemented with matching amounts of EGF. MD and OTM were measured using cephalometric radiographs; bone formation was measured histomorphometrically using tetracycline labeling. Normal MD was not detected after SX, and alveolar bone formation was significantly reduced both around the tooth and in nondental sites. Replacement EGF given to SX rats and supplemental EGF administered to sham rats changed the direction and enhanced the rate of MD. A mesially directed orthodontic force applied to the molars of SX animals increased bone formation on the distal aspect of the tooth roots. Supplemental EGF did not significantly affect OTM. EGF affects alveolar bone remodeling, as manifested clinically by alterations in normal maxillary MD.


2017 ◽  
Vol 758 ◽  
pp. 255-263 ◽  
Author(s):  
Ananto Ali Alhasyimi ◽  
Pinandi Sri Pudyani ◽  
Widya Asmara ◽  
Ika Dewi Ana

Relapse is considered a significant failure after orthodontic treatment. In response to relapse, RANKL expressions will increase, while OPG expressions will decrease. CHA is thought to be one of an ideal candidate for enhancing bone formation. Moreover, a-PRF is a source high levels of growth factors that play a central role in the bone remodeling. This research was intended to investigate the effect of hydrogel CHA-aPRF in preventing relapse. Hydrogel-CHA was initially designed, with its degradation profile and FTIR (Fourie’s Transform Infrared) spectra were investigated as the basis to find out optimum formulation before incorporated with aPRF. Hydrogel-CHA microspheres were prepared in 3 different compositions: those were encoded 30-CHA, 40-CHA, and 50-CHA. After the hydrogel formulation and characterization were completed, 10 mL blood samples were collected, then centrifuged at 1500 rpm for 14 min. At the end of the centrifugation process, the aPRF clot was isolated and then pressed to obtain their releasate. The releasate aPRF was then loaded into the best formulation candidate of hydrogel CHA. The hydrogel incorporated aPRF was then gently injected on the mesial side of incisor gingival sulcus of the rabbit after orthodontic tooth movement. The FTIR analysis showed that carbonated apatite was successfully developed during the fabrication process of hydrogel-CHA microspheres. It was also known that degradation profile of 30-CHA was considered ideal compared to the other compositions. The application of CHA-aPRF (group C) was proven to significantly prevent relapse, indicated by lowest percentage of relapse 21 days after debonding (29.95±3.91%) compared to control group. Furthermore, it has been found that expressions of RANKL were significantly lowest (p<0.05) in group C on day 0, 3, and 7, while OPG expressions showed significantly highest (p<0.05) in group C on day 14 and 21 after debonding. These results indicate that incorporation of hydrogel-CHA has potential effect to enhance alveolar bone remodeling and prevent orthodontic relapse by stimulates OPG expression and suppresses RANKL expression.


2020 ◽  
Vol 90 (6) ◽  
pp. 774-782
Author(s):  
Ng Heng Khiang Teh ◽  
Saritha Sivarajan ◽  
Muhammad Khan Asif ◽  
Norliza Ibrahim ◽  
Mang Chek Wey

ABSTRACT Objectives To investigate the effect of micro-osteoperforation (MOP) on the horizontal and vertical distribution of mandibular trabeculae bone volume fraction in relation to different MOP intervals during canine retraction. Materials and Methods This single-center, single-blinded, prospective randomized split-mouth clinical trial included 30 healthy participants aged 18 years and older, randomized into three groups of different MOP intervals (4, 8, and 12-weekly). Cone beam computed tomography images were taken to assess the bone volume fraction (bone volume over total volume or BV/TV). Results BV/TV was significantly reduced (mean difference: 9.79%, standard deviation [SD]: 11.89%; 95% confidence interval [CI]: 4.77, 14.81%; P &lt; .01) and canine retraction increased (mean difference: -1.25 mm/4 mo, SD: 0.79 mm; 95% CI: -1.59, -0.92 mm; P &lt; .01) with MOP, compared to control sites. MOP significantly changed the vertical and horizontal patterns of trabeculae bone with lower values nearer to intervention sites. Only the 4-weekly MOP interval group showed significant decrease in BV/TV (mean difference: 14.73%, SD: 12.88%; 95% CI: 3.96, 25.50%; P = .01) despite significant increase in canine retraction rate for all interval groups. With the use of MOP, BV/TV was found to be inversely correlated to the rate of canine retraction (r = -0.425; P = .04). Conclusions Mandibular trabecular alveolar bone volume fraction was reduced and rate of orthodontic tooth movement increased with MOP, especially in the 4-weekly interval. However, this effect was limited to the immediate interdental region of MOP.


2017 ◽  
Vol 5 (2) ◽  
pp. 90
Author(s):  
Herniyati Herniyati

Background: Orthodontic tooth movement depends on bone remodeling. VEGF plays an important role in bone remodeling in both pressure area and tension area. Robusta coffee contains caffeine, chlorogenic acid and caffeic acid. Caffeine may increase osteoclastogenesis, and caffeic acid has antioxidant effects that may reduce oxidative stress in osteoblasts Objective: To analysis of VEGF of orthodontic tooth movement post robusta coffeesteeping administration. Material and methods: The experimental laboratories research used 16rats  were divided into 2 groups. Group A: the rats were applied with  orthodontic mechanical force (OMF) and group B: OMF + coffee steeping of 20mg /100 g of BW. OMF was conducted by applying  ligature wire with a diameter of 0.20 mm on the molar-1 (M-1) and both incivus of right maxilla. Subsequently, M-1 of right maxilla was moved to mesial  with Niti closed coil spring. Observations were made on days 15 and 22 by taking the gingival crevicular fluid by putting paper point on the gingival sulcus of mesio-and disto-palatal area of M-1 of right maxilla to determine the levels of VEGF using ELISA method. Results: the administration of Robusta coffee steeping increased the levels of VEGF in both compression area and tension area (p <0.05).The levels of VEGF in tension area larger than the compression area(p >0.05).Conclusion: the Robusta coffee steeping administration increased the levels of VEGF oforthodontic tooth movement ,therefore it may improve alveolar bone remodeling process and it may be an alternative to accelerate orthodontic treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yukun Jiang ◽  
Yuzhe Guan ◽  
Yuanchen Lan ◽  
Shuo Chen ◽  
Tiancheng Li ◽  
...  

Orthodontic tooth movement (OTM) is a process depending on the remodeling of periodontal tissues surrounding the roots. Orthodontic forces trigger the conversion of mechanical stimuli into intercellular chemical signals within periodontal ligament (PDL) cells, activating alveolar bone remodeling, and thereby, initiating OTM. Recently, the mechanosensitive ion channel Piezo1 has been found to play pivotal roles in the different types of human cells by transforming external physical stimuli into intercellular chemical signals. However, the function of Piezo1 during the mechanotransduction process of PDL cells has rarely been reported. Herein, we established a rat OTM model to study the potential role of Piezo1 during the mechanotransduction process of PDL cells and investigate its effects on the tension side of alveolar bone remodeling. A total of 60 male Sprague-Dawley rats were randomly assigned into three groups: the OTM + inhibitor (INH) group, the OTM group, and the control (CON) group. Nickel-titanium orthodontic springs were applied to trigger tooth movement. Mice were sacrificed on days 0, 3, 7, and 14 after orthodontic movement for the radiographic, histological, immunohistochemical, and molecular biological analyses. Our results revealed that the Piezo1 channel was activated by orthodontic force and mainly expressed in the PDL cells during the whole tooth movement period. The activation of the Piezo1 channel was essential for maintaining the rate of orthodontic tooth movement and facilitation of new alveolar bone formation on the tension side. Reduced osteogenesis-associated transcription factors such as Runt-related transcription factor 2 (RUNX2), Osterix (OSX), and receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio were examined when the function of Piezo1 was inhibited. In summary, Piezo1 plays a critical role in mediating both the osteogenesis and osteoclastic activities on the tension side during OTM.


Oral Diseases ◽  
2018 ◽  
Author(s):  
Chengri Li ◽  
Choo‐ryung Chung ◽  
Chung‐ju Hwang ◽  
Kee‐Joon Lee

Sign in / Sign up

Export Citation Format

Share Document